
求证x²+y²+z²≥xy+yz+zx
3个回答
展开全部
不等式两边同时乘以2,得2(x²+y²+z²)≥2(xy+yz+zx)
去括号得:x²+y²+z²+x²+y²+z²≥xy+yz+zx+xy+yz+zx
x²+y²≥2xy,y²+z²≥2yz,x²+z²≥2zx,代入原式化简可得x²+y²+z²≥xy+yz+zx。
去括号得:x²+y²+z²+x²+y²+z²≥xy+yz+zx+xy+yz+zx
x²+y²≥2xy,y²+z²≥2yz,x²+z²≥2zx,代入原式化简可得x²+y²+z²≥xy+yz+zx。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
移项x²+y²+z²-xy-yz-zx>=0
两边乘2:2x²+2y²+2z²-2xy-2yz-2zx=(x-y)²+(y-z)²+(z-x)²>=0恒成立
两边乘2:2x²+2y²+2z²-2xy-2yz-2zx=(x-y)²+(y-z)²+(z-x)²>=0恒成立
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∵2(x²+y²+z²)-2(xy+yz+xz)
=(x²+y²-2xy)+(y²+z²-2yz)+(x²+z²-2xz)
=(x-y)²+(y-z)²+(x-z)²
≥0
∴2(x²+y²+z²)≥2(xy+yz+xz)
∴x²+y²+z²≥xy+yz+zx
=(x²+y²-2xy)+(y²+z²-2yz)+(x²+z²-2xz)
=(x-y)²+(y-z)²+(x-z)²
≥0
∴2(x²+y²+z²)≥2(xy+yz+xz)
∴x²+y²+z²≥xy+yz+zx
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询