已知(x^2+1)(x-1)^9=a0+a1x+a2x^2+……a11x^11 求(a1+3a3+……+11a11)^2-(2a2+4a4+……+10a10)^2
1个回答
展开全部
[(x^2+1)(x-1)^9]的导函数为
a1+2*a2*x+3*a3*x^2+......+11*a11*x^10
=2x(x-1)^9+9(x-1)^8(x^2+1)
令x=1,得a1+2a2+3a3+......+11a11=0
令x=-1,得-a1+2a2-3a3+......-11a11=-256
两式相加,得2a2+4a4+……+10a10=-128
则a1+3a3+……+11a11=128
(a1+3a3+……+11a11)^2-(2a2+4a4+……+10a10)^2
=128^2-128^2
=0
a1+2*a2*x+3*a3*x^2+......+11*a11*x^10
=2x(x-1)^9+9(x-1)^8(x^2+1)
令x=1,得a1+2a2+3a3+......+11a11=0
令x=-1,得-a1+2a2-3a3+......-11a11=-256
两式相加,得2a2+4a4+……+10a10=-128
则a1+3a3+……+11a11=128
(a1+3a3+……+11a11)^2-(2a2+4a4+……+10a10)^2
=128^2-128^2
=0
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询