等差数列{an}的前n项和为Sn,满足a3=7,且a5+a7=26,求:令bn=1∕(an²-4﹚,求数列bn的前n项和
5个回答
展开全部
设公差为d,
a5+a7
=a3+2d+a3+4d
=2a3+6d
=26
代入a3=7
d=2
a1=a3-2d=3
an=2n+1
bn=1/(an²-4)
=1/[(an+2)(an-2)]
=1/4×[1/(an-2)-1/(an+2)]
b1=1/4×(1-1/5)
Sbn=1/4×{(1-1/5)+(1/3-1/7)+(1/5-1/9)+(1/7-1/11)+...[1/(2n-1)-1/(2n+3)]}
=1/4×[1+1/3-1/(2n+1)-1/(2n+3)]
=1/4×{4/3-(4n+4)/[(2n+1)(2n+3)]}
=1/3-(n+1)/(4n²+8n+3)
a5+a7
=a3+2d+a3+4d
=2a3+6d
=26
代入a3=7
d=2
a1=a3-2d=3
an=2n+1
bn=1/(an²-4)
=1/[(an+2)(an-2)]
=1/4×[1/(an-2)-1/(an+2)]
b1=1/4×(1-1/5)
Sbn=1/4×{(1-1/5)+(1/3-1/7)+(1/5-1/9)+(1/7-1/11)+...[1/(2n-1)-1/(2n+3)]}
=1/4×[1+1/3-1/(2n+1)-1/(2n+3)]
=1/4×{4/3-(4n+4)/[(2n+1)(2n+3)]}
=1/3-(n+1)/(4n²+8n+3)
展开全部
a5+a7=2a6=26
a6=13,a6-a3=3d=6
d=2,an=1+2n
bn=1/[(2n-1)(2n+3)]=(1/4)x[(1/2n-1)-(1/2n+3)]
Sbn=(1/4)x[4/3-1/(2n+1)-1/(2n+3)]
=1/3-(n+1)/[(2n+1)(2n+3)]
a6=13,a6-a3=3d=6
d=2,an=1+2n
bn=1/[(2n-1)(2n+3)]=(1/4)x[(1/2n-1)-(1/2n+3)]
Sbn=(1/4)x[4/3-1/(2n+1)-1/(2n+3)]
=1/3-(n+1)/[(2n+1)(2n+3)]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
因为a5+a7=26 所以2a6=26 a6=13
a3+3d=a6 所以d=2 an=2n+1
所以bn=1/(4乘n平方+4n-3)=1/(2n-1)(2n+3)=1/(2n-1)(2n+3)=(1/4)/[1/(2n-1)-1/(2n+3)]
bn前n项和=(1/4)[1+1/3-1/(2n+1)-1/(2n+3]=1/3+(n+1)/(2n+1)(2n+3)
a3+3d=a6 所以d=2 an=2n+1
所以bn=1/(4乘n平方+4n-3)=1/(2n-1)(2n+3)=1/(2n-1)(2n+3)=(1/4)/[1/(2n-1)-1/(2n+3)]
bn前n项和=(1/4)[1+1/3-1/(2n+1)-1/(2n+3]=1/3+(n+1)/(2n+1)(2n+3)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
因为a5+a7=26 所以2a6=26 a6=13
a3+3d=a6 所以d=2 an=2n+1
所以bn=1/(4乘n平方+4n-3)=1/(2n-1)(2n+3)
bn前n项和=1/(1*5)+1/(3*7)+1/(7*11)+·······+1/(2n-1)2n+3)
=1/4(1-1\5+1/5-1/7+1/7-1/11+······+2n-1-2n-3)
=1/4(1-2n-3)
=-1/2-n/2
我确定这样做 过程简写了
a3+3d=a6 所以d=2 an=2n+1
所以bn=1/(4乘n平方+4n-3)=1/(2n-1)(2n+3)
bn前n项和=1/(1*5)+1/(3*7)+1/(7*11)+·······+1/(2n-1)2n+3)
=1/4(1-1\5+1/5-1/7+1/7-1/11+······+2n-1-2n-3)
=1/4(1-2n-3)
=-1/2-n/2
我确定这样做 过程简写了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2012-07-05
展开全部
a3=7,a5+a7=26,因为是等差,所以2a6=26,a6=13,d=2,a1=3 ,an=2n+1
bn=1/4n^2+4n-3 =1/4(1/2n-1-1/2n+3)
Sbn=1/4(1-1/5+1/3-1/7+1/5-1/9+...-1/2n-3-1/2n+3)=1/3-n/2n-3
bn=1/4n^2+4n-3 =1/4(1/2n-1-1/2n+3)
Sbn=1/4(1-1/5+1/3-1/7+1/5-1/9+...-1/2n-3-1/2n+3)=1/3-n/2n-3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询