求齐次线性方程组x1+3x2+3x3+2x4+x5=0 2x1+6x2+9x3+5x4+3x5=0 -x1+3x2+3x3+2x5=0
1个回答
展开全部
解: 系数矩阵 A=
1 3 3 2 1
2 6 9 5 3
-1 3 3 0 2
r2-2r1,r3+r1
1 3 3 2 1
0 0 3 1 1
0 6 6 2 3
r1-r2,r3-3r2
1 3 0 1 0
0 0 3 1 1
0 6 0 0 1
r1-(1/2)r3,r2*(1/3),r3*(1/6)
1 0 0 1 -1/2
0 0 1 1/3 1/3
0 1 0 0 1/6
r2<->r3
1 0 0 1 -1/2
0 1 0 0 1/6
0 0 1 1/3 1/3
所以方程组的通解为 c1(3,0,1,-3,0)^T+c2(3,-1,-2,0,6)^T
1 3 3 2 1
2 6 9 5 3
-1 3 3 0 2
r2-2r1,r3+r1
1 3 3 2 1
0 0 3 1 1
0 6 6 2 3
r1-r2,r3-3r2
1 3 0 1 0
0 0 3 1 1
0 6 0 0 1
r1-(1/2)r3,r2*(1/3),r3*(1/6)
1 0 0 1 -1/2
0 0 1 1/3 1/3
0 1 0 0 1/6
r2<->r3
1 0 0 1 -1/2
0 1 0 0 1/6
0 0 1 1/3 1/3
所以方程组的通解为 c1(3,0,1,-3,0)^T+c2(3,-1,-2,0,6)^T
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询