四边形分类(包括:平行四边形、菱形、矩形、梯形、正方形)、性质(对角线性质)、判定
急要!!!!!!!学的不好,要考试了,最好给表格,便于打印的那种,好的加分,谢了啊!!!!!!!!!!!!!!!!!!!!!!!!!...
急要!!!!!!!学的不好,要考试了,最好给表格,便于打印的那种,好的加分,谢了啊!!!!!!!!!!!!!!!!!!!!!!!!!
展开
2个回答
展开全部
参考::http://wenku.baidu.com/view/05d6032f7375a417866f8fe6.html
下载后,就可打印。
平行四边形的性质和判定
定义:两组对边分别平行的四边形叫做平行四边形.
性质:①平行四边形两组对边分别平行;
②平行四边形的两组对边分别相等;
③平行四边形的两组对角分别相等;
④平行四边形的对角线互相平分 .
判定:①两组对边分别平行的四边形是平行四边形;
②两组对边分别相等的四边形是平行四边形;
③两组对角分别相等的四边形是平行四边形;
④对角线互相平分的四边形是平行四边形;
⑤一组对边平行且相等的四边形是平行四边形 .
注意:一组对边平行,一组对角相等的四边形是平行四边形;一组对边平行,另一组对边相等的四边形不一定是平行四边形,如:等腰梯形
菱形是四边相等的四边形,属於特殊的平行四边形,除了这些图形的性质之外,它还具有以下性质:
对角线互相垂直平分;
四条边都相等;
对角相等,邻角互补;
每条对角线平分一组对角.
判定:
一组邻边相等的平行四边形是菱形
对角线互相垂直的平行四边形是菱形
四边相等的四边形是菱形
依次连接四边形各边中点所得的四边形称为中点四边形。不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。菱形的中点四边形是矩形。
菱形面积:对角线相乘后除二或边长乘高;
菱形周界为边长的四倍:
顺次连接菱形各边中点 为矩形
正方形是特殊的菱形
梯形是指一组对边平行而另一组对边不平行的四边形。平行的两边叫做梯形的底,其中长边叫下底;不平行的两边叫腰;两底间的距离叫梯形的高。一腰垂直于底的梯形叫直角梯形,两腰相等的梯形叫等腰梯形。
梯形的性质及判定:
一组对边平行且另一组对边不平行的四边形是梯形,但要判断另一组对边不平行比较困难,一般用一组对边平行且不相等的四边形是梯形来判断。
等腰梯形性质:等腰梯形在同一底上的两个底角相等
等腰梯形的两条对角线相等
等腰梯形判定:1两腰相等的梯形是等腰梯形;
2同一底上的两个角相等的梯形是等腰梯形;
3对角线相等的梯形是等腰梯形.
梯形的面积公式是:“上底加下底 乘以高 除以2”。
矩形:有一个角是直角的平行四边形叫做矩形,也就是长方形。
矩形有以下性质:
1.矩形的四个叫都是直角
2.矩形的对角线相等且互相平分
3.对边相等且平行
矩形的判定:
1.有一个角是直角的平行四边形是矩形
2.对角线相等的平行四边形是矩形
3.有三个角是直角的四边形是矩形
依次连接四边形各边中点所得的四边形称为中点四边形。不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。矩形的中点四边形是菱形
正方形
各边相等且有三个角是直角的四边形叫做正方形。
有一组邻边相等的矩形是正方形。
有一组邻边相等且一个角是直角的平行四边形是正方形。
特征
边:两组对边分别平行;四条边都相等;相邻边互相垂直
内角:四个角都是90°;
对角线:对角线互相垂直;对角线相等且互相平分;每条对角线平分一组对角;
对称性:既是中心对称图形,又是轴对称图形(有四条对称轴)。
判定方法
1:对角线相等的菱形是正方形
2:对角线互相垂直的矩形是正方形,正方形是一种特殊的矩形
3:四边相等,有三个角是直角的四边形是正方形
4:一组邻边相等的矩形是正方形
5:一组邻边相等且有一个角是直角的平行四边形是正方形
6:四边均相等,对角线互相垂直平分且相等的平面四边形
依次连接四边形各边中点所得的四边形称为中点四边形。不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。正方形的中点四边形是正方形。
面积计算公式:S=a×a
或:S=对角线×对角线÷2
周长计算公式: C=4a
正方形是特殊的长方形 , 菱形, 平行四边形,四边形
下载后,就可打印。
平行四边形的性质和判定
定义:两组对边分别平行的四边形叫做平行四边形.
性质:①平行四边形两组对边分别平行;
②平行四边形的两组对边分别相等;
③平行四边形的两组对角分别相等;
④平行四边形的对角线互相平分 .
判定:①两组对边分别平行的四边形是平行四边形;
②两组对边分别相等的四边形是平行四边形;
③两组对角分别相等的四边形是平行四边形;
④对角线互相平分的四边形是平行四边形;
⑤一组对边平行且相等的四边形是平行四边形 .
注意:一组对边平行,一组对角相等的四边形是平行四边形;一组对边平行,另一组对边相等的四边形不一定是平行四边形,如:等腰梯形
菱形是四边相等的四边形,属於特殊的平行四边形,除了这些图形的性质之外,它还具有以下性质:
对角线互相垂直平分;
四条边都相等;
对角相等,邻角互补;
每条对角线平分一组对角.
判定:
一组邻边相等的平行四边形是菱形
对角线互相垂直的平行四边形是菱形
四边相等的四边形是菱形
依次连接四边形各边中点所得的四边形称为中点四边形。不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。菱形的中点四边形是矩形。
菱形面积:对角线相乘后除二或边长乘高;
菱形周界为边长的四倍:
顺次连接菱形各边中点 为矩形
正方形是特殊的菱形
梯形是指一组对边平行而另一组对边不平行的四边形。平行的两边叫做梯形的底,其中长边叫下底;不平行的两边叫腰;两底间的距离叫梯形的高。一腰垂直于底的梯形叫直角梯形,两腰相等的梯形叫等腰梯形。
梯形的性质及判定:
一组对边平行且另一组对边不平行的四边形是梯形,但要判断另一组对边不平行比较困难,一般用一组对边平行且不相等的四边形是梯形来判断。
等腰梯形性质:等腰梯形在同一底上的两个底角相等
等腰梯形的两条对角线相等
等腰梯形判定:1两腰相等的梯形是等腰梯形;
2同一底上的两个角相等的梯形是等腰梯形;
3对角线相等的梯形是等腰梯形.
梯形的面积公式是:“上底加下底 乘以高 除以2”。
矩形:有一个角是直角的平行四边形叫做矩形,也就是长方形。
矩形有以下性质:
1.矩形的四个叫都是直角
2.矩形的对角线相等且互相平分
3.对边相等且平行
矩形的判定:
1.有一个角是直角的平行四边形是矩形
2.对角线相等的平行四边形是矩形
3.有三个角是直角的四边形是矩形
依次连接四边形各边中点所得的四边形称为中点四边形。不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。矩形的中点四边形是菱形
正方形
各边相等且有三个角是直角的四边形叫做正方形。
有一组邻边相等的矩形是正方形。
有一组邻边相等且一个角是直角的平行四边形是正方形。
特征
边:两组对边分别平行;四条边都相等;相邻边互相垂直
内角:四个角都是90°;
对角线:对角线互相垂直;对角线相等且互相平分;每条对角线平分一组对角;
对称性:既是中心对称图形,又是轴对称图形(有四条对称轴)。
判定方法
1:对角线相等的菱形是正方形
2:对角线互相垂直的矩形是正方形,正方形是一种特殊的矩形
3:四边相等,有三个角是直角的四边形是正方形
4:一组邻边相等的矩形是正方形
5:一组邻边相等且有一个角是直角的平行四边形是正方形
6:四边均相等,对角线互相垂直平分且相等的平面四边形
依次连接四边形各边中点所得的四边形称为中点四边形。不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。正方形的中点四边形是正方形。
面积计算公式:S=a×a
或:S=对角线×对角线÷2
周长计算公式: C=4a
正方形是特殊的长方形 , 菱形, 平行四边形,四边形
参考资料: http://wenku.baidu.com/view/05d6032f7375a417866f8fe6.html
展开全部
四边形分类:四边形分为一般四边形和梯形、平行四边形。平行四边形又分为普通平行四边形,矩形,菱形,正方形;梯形又有等腰梯形、直角梯形、一般梯形。按角分,直角的有矩形、正方形不是直角的平行四边形、菱形。
四边形分为任意四边形、梯形、平行四边形三类
一、任意四边形,无特殊性质,四角和为360°
二、梯形:一组对边平行但不相等
1、一般梯形,面积为1/2(a+b)h
2、等腰梯形,两腰相等,腰与同一底边形成的两角相等,一般做题可平移腰做辅助线,面积为1/2(a+b)h
3、直角梯形,一腰与底边垂直,面积还是1/2(a+b)h
三、平行四边形,对边平行且相等,对角相等
1、一般平行四边形,面积为ah
2、菱形,四边相等,对角线相互垂直,面积(ah)或(1/2对角线乘积)
3、长方形,四角为直角,面积为ab
4、正方形,四边相等,四角为直角,对角线相互垂直,面积为a^2
平行四边形
定义:两组对边分别平行的四边形叫做平行四边形
性质:平行四边形的对边相等
平行四边形的对角相等
平行四边形的对角线互相平分
判定:两组对边分别平行的四边形是平行四边形
两组对边分别相等的四边形是平行四边形
一组对边平行且相等的四边形是平行四边形
两条对角线互相平分的四边形是平行四边形
菱形
定义:一组邻边相等的平行四边形叫菱形
性质:菱形的四条边都相等
菱形的对角线互相垂直且平分
每一条对角线平分一组对角
判定:一组邻边相等的平行四边形是菱形
对角线互相垂直的平行四边形是菱形
四条边都相等的四边形是菱形
对角现互相垂直且平分的四边形是菱形
矩形
定义:有一个内角是直角的平行四边形叫做矩形
性质:对边平行且相等
四个角都是直角
对角线互相平分且相等
判定:有一个角是直角的平行四边形是矩形
对角线相等的平行四边形是矩形
三个角是直角的四边形是矩形
正方形
定义:一组邻边相等的矩形叫做正方形
对角线相等的矩形叫正方形
对角线互相垂直的矩形叫正方形
有一个角是直角的菱形叫正方形
性质:四条边都相等
四个角都相等
对角线互相相等,垂直,平分
每条对角线平分一组对角
两条对角线所在的直线,两条边的中点的连线,所在的直线,是正方形的对称轴
判定:对角线互相平分,相等,垂直是正方形
证明该图形既为菱形又为矩形
一组邻边相等的矩形是正方形
有一个角为直角的菱形是正方形
对角线相等的菱形是正方形
对角线垂直的矩形是正方形
等腰梯形
定义: 两条腰相等的梯形叫做等腰梯形
性质:两底平行,两腰相等
对角线相等
同一底上的两个内角相等
上下两底的中线连线所在的直线(底的垂直平分线)
判定:两腰相等的梯形是等腰梯形
同一底上两腰相等的梯形是等腰梯形
对角线相等的梯形是等腰梯形
对角互补的梯形是等腰梯形
等腰三角形作辅助线的方法
①作高
②平移腰
③平移对角线
④延长对角线
四边形分为任意四边形、梯形、平行四边形三类
一、任意四边形,无特殊性质,四角和为360°
二、梯形:一组对边平行但不相等
1、一般梯形,面积为1/2(a+b)h
2、等腰梯形,两腰相等,腰与同一底边形成的两角相等,一般做题可平移腰做辅助线,面积为1/2(a+b)h
3、直角梯形,一腰与底边垂直,面积还是1/2(a+b)h
三、平行四边形,对边平行且相等,对角相等
1、一般平行四边形,面积为ah
2、菱形,四边相等,对角线相互垂直,面积(ah)或(1/2对角线乘积)
3、长方形,四角为直角,面积为ab
4、正方形,四边相等,四角为直角,对角线相互垂直,面积为a^2
平行四边形
定义:两组对边分别平行的四边形叫做平行四边形
性质:平行四边形的对边相等
平行四边形的对角相等
平行四边形的对角线互相平分
判定:两组对边分别平行的四边形是平行四边形
两组对边分别相等的四边形是平行四边形
一组对边平行且相等的四边形是平行四边形
两条对角线互相平分的四边形是平行四边形
菱形
定义:一组邻边相等的平行四边形叫菱形
性质:菱形的四条边都相等
菱形的对角线互相垂直且平分
每一条对角线平分一组对角
判定:一组邻边相等的平行四边形是菱形
对角线互相垂直的平行四边形是菱形
四条边都相等的四边形是菱形
对角现互相垂直且平分的四边形是菱形
矩形
定义:有一个内角是直角的平行四边形叫做矩形
性质:对边平行且相等
四个角都是直角
对角线互相平分且相等
判定:有一个角是直角的平行四边形是矩形
对角线相等的平行四边形是矩形
三个角是直角的四边形是矩形
正方形
定义:一组邻边相等的矩形叫做正方形
对角线相等的矩形叫正方形
对角线互相垂直的矩形叫正方形
有一个角是直角的菱形叫正方形
性质:四条边都相等
四个角都相等
对角线互相相等,垂直,平分
每条对角线平分一组对角
两条对角线所在的直线,两条边的中点的连线,所在的直线,是正方形的对称轴
判定:对角线互相平分,相等,垂直是正方形
证明该图形既为菱形又为矩形
一组邻边相等的矩形是正方形
有一个角为直角的菱形是正方形
对角线相等的菱形是正方形
对角线垂直的矩形是正方形
等腰梯形
定义: 两条腰相等的梯形叫做等腰梯形
性质:两底平行,两腰相等
对角线相等
同一底上的两个内角相等
上下两底的中线连线所在的直线(底的垂直平分线)
判定:两腰相等的梯形是等腰梯形
同一底上两腰相等的梯形是等腰梯形
对角线相等的梯形是等腰梯形
对角互补的梯形是等腰梯形
等腰三角形作辅助线的方法
①作高
②平移腰
③平移对角线
④延长对角线
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询