数列{an}是公比为q的等比数列,a1=1,a(n+2)=a(n+1)+an/2(n∈N)(1)求公比q(2)令bn=nan,求{bn}的前n项和Sn

要求过程和最后结果,3Q... 要求过程和最后结果,3Q 展开
Flying3689
2012-07-07 · TA获得超过2787个赞
知道小有建树答主
回答量:650
采纳率:0%
帮助的人:265万
展开全部
如果原题确实为a(n+2)=a(n+1)+an/2
解出的公比为无理数
因此猜测原题应为a(n+2)=[a(n+1)+an]/2
实际解法过程是一样的

第1问:
an=a1*q^(n-1)=q^(n-1)
由a(n+2)=[a(n+1)+an]/2
有q^(n+1)=[q^n+q^(n-1)]/2
q^2=(q+1)/2
2q^2-q-1=0
(q-1)(2q+1)=0
得q=1或q=-1/2
因为q为公比,舍弃q=1
所以q=-1/2

第2问:
an=q^(n-1)=(-1/2)^(n-1)
所以bn=n*(-1/2)^(n-1)
Sn=1*a1+2*a2+3*a3+……+n*an
(-1/2)*Sn=1*a2+2*a3+3*a4+……+n*a(n+1)
Sn-(-1/2)*Sn
=a1+a2+a3+……+an-na(n+1)
=a1*[1-q^n]/(1-q)-n*a1*q^n
=[1-(-1/2)^n]/(1+1/2)-n*(-1/2)^n
=-(n+2/3)*(-1/2)^n+2/3
即(3/2)*Sn=-(n+2/3)*(-1/2)^n+2/3

所以Sn=-(2n/3+4/9)*(-1/2)^n+4/9
至尊冥河007
2012-07-07
知道答主
回答量:20
采纳率:0%
帮助的人:2.5万
展开全部
看看你的那个等式最后一项是an除以2么 ?还是 整体除以2?
追问
整体除以2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式