已知椭圆x^2/2+y^2/4=1与直线Y=√2X交于A点,过A作倾斜角互补的两
已知椭圆x^2/2+y^2/4=1与直线Y=√2X交于A点,过A作倾斜角互补的两条直线,他们与椭圆交于B、C,(1)求直线BC的斜率(2)求三角形ABC面积最大值...
已知椭圆x^2/2+y^2/4=1与直线Y=√2X交于A点,过A作倾斜角互补的两条直线,他们与椭圆交于B、C,(1)求直线BC的斜率(2)求三角形ABC面积最大值
展开
展开全部
这题应该是射线Y=√2x吧。。。。。。。。。不过如果真的是直线Y=√2x也无所谓,分类讨论,方法一样的。。。。
(1)以y=√2x(x≥0)代入椭圆方程,解得x=1,故y=√2,所以A(1,√2),
设AC斜率为k(k>0),因为AB的倾角与AC的倾角互补,所以AB的斜率为-k,
故AC方程为:y=k(x-1)+√2,AB方程为:y=-k(x-1)+√2,
以AC方程y=k(x-1)+√2代入椭圆方程,
整理得:(k^2+2)x^2+(2√2k-2k^2)x+k^2-2√2k-2=0,
因为A(1,√2)为AC与椭圆交点,故1为上方程的一个根,另一根为x[C],
故x[C]·1=x[C]=(k^2-2√2k-2)/(k^2+2),
故y[C]=k(x[C]-1)+√2=(-√2k^2-4k+2√2)/(k^2+2),
故C((k^2-2√2k-2)/(k^2+2),(-√2k^2-4k+2√2)/(k^2+2)),
同理可求得B((k^2+2√2k-2)/(k^2+2),(-√2k^2+4k+2√2)/(k^2+2)),
直线BC的斜率k[AB]=(y[C]-y[B])/(x[C]-x[B])
=[(-√2k^2-4k+2√2)/(k^2+2)-(-√2k^2+4k+2√2)/(k^2+2)]/[k^2-2√2k-2)/(k^2+2)-(k^2+2√2k-2)/(k^2+2)]=8k/(4√2k)=√2,
所以直线BC的斜率为√2。
(2)设直线BC与y轴交点为(0,b),又直线BC的斜率为√2,
故直线BC方程为y=√2x+b,代入椭圆方程得:4x^2+2√2bx+b^2-4=0,
令△>0,得b^2<8,
x[B]+x[C]=-√2b/2,x[B]·x[C]=(b^2-4)/4,
(x[B]-x[C])^2=(x[B]+x[C])^2-4x[B]·x[C]=4-b^2/2,
y[B]+y[C]=(√2x[B]+b)+(√2x[C]+b)=√2(x[B]+x[C])+2b=b,
y[B]·y[C]=(√2x[B]+b)·(√2x[C]+b)
=2x[B]·x[C]+√2b(x[B]+x[C])+b^2=b^2/2-4,
(y[B]-y[C])^2=(y[B]+y[C])^2-4y[B]·y[C]=4-b^4,
故|AB|=√[(x[B]-x[C])^2+(y[B]-y[C])^2]=√(8-3b^2/2),
求得原点O到AB的距离h=|b|/√3,
因为AO与BC斜率均为√2,所以AO‖BC,
故A到AB的距离也为h,
三角形ABC的面积S=|AB|h/2=(√6/12)√(-3b^4+16b^2),
[把(-3b^4+16b^2)看作b^2的二次函数],
故当b^2=8/3时,Smax=(√6/12)·8/√3=2√2/3。
(1)以y=√2x(x≥0)代入椭圆方程,解得x=1,故y=√2,所以A(1,√2),
设AC斜率为k(k>0),因为AB的倾角与AC的倾角互补,所以AB的斜率为-k,
故AC方程为:y=k(x-1)+√2,AB方程为:y=-k(x-1)+√2,
以AC方程y=k(x-1)+√2代入椭圆方程,
整理得:(k^2+2)x^2+(2√2k-2k^2)x+k^2-2√2k-2=0,
因为A(1,√2)为AC与椭圆交点,故1为上方程的一个根,另一根为x[C],
故x[C]·1=x[C]=(k^2-2√2k-2)/(k^2+2),
故y[C]=k(x[C]-1)+√2=(-√2k^2-4k+2√2)/(k^2+2),
故C((k^2-2√2k-2)/(k^2+2),(-√2k^2-4k+2√2)/(k^2+2)),
同理可求得B((k^2+2√2k-2)/(k^2+2),(-√2k^2+4k+2√2)/(k^2+2)),
直线BC的斜率k[AB]=(y[C]-y[B])/(x[C]-x[B])
=[(-√2k^2-4k+2√2)/(k^2+2)-(-√2k^2+4k+2√2)/(k^2+2)]/[k^2-2√2k-2)/(k^2+2)-(k^2+2√2k-2)/(k^2+2)]=8k/(4√2k)=√2,
所以直线BC的斜率为√2。
(2)设直线BC与y轴交点为(0,b),又直线BC的斜率为√2,
故直线BC方程为y=√2x+b,代入椭圆方程得:4x^2+2√2bx+b^2-4=0,
令△>0,得b^2<8,
x[B]+x[C]=-√2b/2,x[B]·x[C]=(b^2-4)/4,
(x[B]-x[C])^2=(x[B]+x[C])^2-4x[B]·x[C]=4-b^2/2,
y[B]+y[C]=(√2x[B]+b)+(√2x[C]+b)=√2(x[B]+x[C])+2b=b,
y[B]·y[C]=(√2x[B]+b)·(√2x[C]+b)
=2x[B]·x[C]+√2b(x[B]+x[C])+b^2=b^2/2-4,
(y[B]-y[C])^2=(y[B]+y[C])^2-4y[B]·y[C]=4-b^4,
故|AB|=√[(x[B]-x[C])^2+(y[B]-y[C])^2]=√(8-3b^2/2),
求得原点O到AB的距离h=|b|/√3,
因为AO与BC斜率均为√2,所以AO‖BC,
故A到AB的距离也为h,
三角形ABC的面积S=|AB|h/2=(√6/12)√(-3b^4+16b^2),
[把(-3b^4+16b^2)看作b^2的二次函数],
故当b^2=8/3时,Smax=(√6/12)·8/√3=2√2/3。
展开全部
这是一个典型的高中解析几何题.
观察椭圆方程,知其长轴在Y轴上(这一点很重要,可以帮助画出草图,而这有助于直观的观察,从而粗略估计结果范围,有助于检查结果的正确性)
两个方程联立可得A坐标为(1,√2)或(-1,-√2),由对称性,只须讨论其中一个即可,为简单运算和正确运算起见,选取第一象限的点(一定要合理利用对称性,其可以大大简化运算)
确定A(1,√2),设AB,AC的斜率为K1,K2,倾斜角为X,Y,则由已知条件:X+Y=180度,则tanx=tan(180-y)=tan(-y)=-tany,由此K1+K2=0,
故令K1=K,K2=-K,(随时简化符号,有助于解题的直观,提高准确性)
故设AB为Y-√2=K(X-1);AC为Y-√2=-K(X-1);
分别与椭圆方程联立,套用求根公式可得B,C坐标,得BC斜率,直线方程表达式,BC距离表达式,由此求出A得BC距离,得出题面积表达式,此后取出化为求函数极值的问题,
观察椭圆方程,知其长轴在Y轴上(这一点很重要,可以帮助画出草图,而这有助于直观的观察,从而粗略估计结果范围,有助于检查结果的正确性)
两个方程联立可得A坐标为(1,√2)或(-1,-√2),由对称性,只须讨论其中一个即可,为简单运算和正确运算起见,选取第一象限的点(一定要合理利用对称性,其可以大大简化运算)
确定A(1,√2),设AB,AC的斜率为K1,K2,倾斜角为X,Y,则由已知条件:X+Y=180度,则tanx=tan(180-y)=tan(-y)=-tany,由此K1+K2=0,
故令K1=K,K2=-K,(随时简化符号,有助于解题的直观,提高准确性)
故设AB为Y-√2=K(X-1);AC为Y-√2=-K(X-1);
分别与椭圆方程联立,套用求根公式可得B,C坐标,得BC斜率,直线方程表达式,BC距离表达式,由此求出A得BC距离,得出题面积表达式,此后取出化为求函数极值的问题,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询