小学数学复习提纲的资料?

 我来答
8018流氓兔8018
2012-07-26 · TA获得超过373个赞
知道答主
回答量:61
采纳率:0%
帮助的人:29.7万
展开全部
小学数学总复习提纲
第一部分:数的意义
自然数:
分数: 把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。两个整数相除的商也可以用分数来表示,即:a÷b= (b≠0)。
3、小数:
判断分数能否化成有限小数的方法:
 把最简分数的分母分解质因数,在质因数中只有2和5两个因数组成的就能化成有限小数。(如:的分母8分解质因数是2×2×2中,只有2,所以能化成有限小数。有如:中的分母20分解质因数是2×2×5中,只用2和5,也能化成有限小数。有如:中的分母15分解质因数是3×5中,不是2和5而是3和5,所以不能化成有限小数。)

4、百分数:表示一个数是另一个数的百分之几的数叫做百分数,也叫百分率或百分比。百分数通常用“%”来表示。
成数:“几成”就是“十分之几”。如:六成==60% ,三成五=35%
折扣:“几折”就是原价的百分之几十,如:五折=50%,七八折=78%。
注意:百分数是一种特殊的分数,它只能表示分率,而不能表示数量,因此,在百分数的后面不能带上计算单位。
5、整数和小数的数位表:
整数部分 小数点
. 小数部分
… 亿级 万级 个级
位数 … 千亿位 百亿位 十亿位 亿位 千万位 百万位 十万位 万位 千位 百位 十位 个位 十分位 百分位 千分位 万分位 …
计数单位 千亿 百亿 十亿 亿 千万 百万 十万 万 千 百 十 个 十分之一 百分之一 千分之一 万分之一
6、除法、分数、小数、比的基本性质。
基本性质 应用
除法 被除数和除数同乘或同除以同一个数(0除外),商不变。 计算小数除法和一些简便计算
分数 分子和分母都同乘或除以同一个数(0除外),分数的大小不变。 分数的约分和通分
小数 小数的末尾添上0或去掉0,小数的大小不变。 把小数化简 如:0.3400
比 比的前项和后项都乘或除以相同的数(0除外),比值不变。 化成最简单的整数比

7、小数、分数、百分数的互化。
第二部分:数的整除
1、因数和倍数:
一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
(如:15最小的因数是1,最大的因数是15。)
一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。
(如:31最小的倍数是31,没有最大的倍数。)
2、 是2、3、5的倍数的特征:
2的倍数的特征是:个位上是0、2、4、6、8的数都能被2整除。(如302)
3的倍数的特征是:把各位上的数字加起来能被3整除。(如:324 3+2+4=9能被3整除)
5的倍数的特征是:个位上是0或5的数。(如:15、105、230)
在约分时的应用:,,观察分子分母的个位就很快知道能被2整除。
,,观察分子分母就知道这些数同时能被2、3整除。
,, 观察分子分母可以知道能同时被3、5整除。
3、素数和合数,质因数和分解质因数
素数:一个大于1的数只有1和它本身两个因数的,这样的数叫素数。(如:31)
20以内的素数有:2、3、5、7、11、13、17、19,中最小的素数是2。
合数:一个数除了1和它本身外,还有别的因数的,这样的数叫做合数。(如:25、30)最小的合数是4。
1既不是素数也不是合数。
质因数:每个合数都能写成几个素数相乘的形式,其中每个素数都是这个合数的因数。
分解质因数:把一个合数用几个质因数相乘的形式表示出来,叫做分解质因数。(如:18=2×3×3)
4、最大公因数和最小公倍数,互质数:
最大公因数:几个数公有的因数,叫做这几个数的公因数,其中最大的一个叫做这几个数的最大公因数。
最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
互质数:公因数只有1的两个数叫做互质数。(如:5和7)
判断互质数的两种简单方法:
①两个数都是素数的一定是互质数。(如3和11是互质数)
②个数是相邻的两个自然数一定是互质数。(8和9)
③较大数是素数的两个数一定是互质数。
5、求最大公因数和最小公倍数的两种特殊的情况。
如果两个数是互质数,那么这两个数的最大公因数是1,最小公倍数是他们的乘积。
如果两个数中大数是小数的倍数,那么较小的数是这两个数的最大公因数;较大的数是这两个数的最小公倍数。
(如:7和11,2和17,5和7,8和9他们是互质数,所以最大公因数是1,最小公倍数是他们的乘积。
7和14,15和45,25和75他们就是倍数关系,所以最大公因数是较小的数,最小公倍数是较大的数。)
第三部分、数的运算
定律或性质 举例
加法 加法交换律:a+b = b+a
加法结合律:(a+b)+c = a+(b+c) 42+56=56+12
42+79+58=79+(42+58)
减法 减法的性质:a—b—c = a—(b+c)
或:a—(b+c) = a—b—c 8.29—3.6—6.7=8.29—(3.6+6.7)
13.42—(3.42+5.98)=13.42—3.42—5.98
乘法 乘法交换律:ab = ba
乘法结合律:(ab) c = a (bc)
乘法分配律:(a+b)c = ac+ac 4325=2543
865125=65(1258)
(+)×16=16×+16×
除法 除法性质:abc=a(bc) 326254=326(254)

第四部分:代数的初步认识
1、简易方程:
(1)方程:含有未知数的等式叫做方程。(如:是方程,而3+25不是方程,5+36>100也不是方程。)
(2)解答方程的方法:有六种形式。
A、一个加数=和-另一个加数 B、被减数=差+减数 C、减数=被减数-差
  D、一个因数=积÷另一个因数 E、被除数=商×除数 F、除数=被除数÷商
2、比和比例。
(1)比的基本性质:比的前项和后项都乘或除以相同的数(0除外),比值不变。
比例的基本性质:在比例里,两个内项的积等于两个外项的积。
(2)求比例和化简比的区别:
一般方法 结果
求比例 根据比值的意义,用前项除以后项。 是一个商
化简比 根据比的基本性质,把比化简成最简单的整数比。(方法是:整数比时,同时除以最大公因数。分数比时,前项和后项同时乘以最小公倍数,小数比时,同时乘以相同的倍数变为整数,再化。) 是一个比
3、比例尺: 图上距离与实际距离的比叫比例尺。比例尺分数字比例尺 和线段比例尺。
 1) 2)图上距离=实际距离×比例尺 3)实际距离=图上距离÷比例尺
4、按比例分配:解答按比例分配的应用题的一般步骤:
 (1)先求出总份数。(各项比相加之和)
 (2)写出各部分量占总量的几分之几。(以总份数为分母,各部分比为分子)
 (3)求各部分量是多少。(用总量分别乘以几分之几)

第五部分、量的计量
1、常用的计量单位及其进率。
(1)长度、面积、体积单位:
长度单位:千米、米、分米、厘米、毫米……
面积单位:平方千米、公顷、平方米、平方分米、平方厘米……
体积单位:立方米、立方分米(升)、立方厘米(毫升)……
(2)重量单位:吨、千克、克
(3)时间单位:年、月、日,时、分、秒;
2、平年、闰年的判断方法:
一般平年用“年份÷4”能整除的年份是闰年,不能整除的是平年。
整百年的年份要用“年份÷400”,能整除的年份是闰年,不能整除的是平年。
3、单位名称的转化:

×进率
高级单位的名数 低级单位的名数
÷进率

第六部分、几何初步认识
1、线:直线、射线、线段;
2、角:锐角、直角、钝角、平角、周角;
3、三角形:锐角三角形、钝角三角形、直角三角形,等腰三角形、等边三角形
4、四边形:长方形、正方形、平行四边形、梯形……
5、圆形:(1)一个圆有无数条半径,无数条直径。
在同圆或等圆中,所有的半径都相等,所有的直径都相等。直径是半径的2倍。
(2)圆的周长和直径的比值,叫做圆周率。
用字母表示,圆周率是一个固定的无限不循环小数,通常取值3.14。
6、平面图形的周长和面积
(1)围成一个图形所有的边长的总和叫做这个图形的周长。
(2)物体的表面或围成的平面图形的大小,叫做他们的面积。
(3)各种平面图形的周长、面积。
图形 周长 面积

长方形的周长=(长×宽)÷2
c=(a+b)×2 长方形的面积=长×宽
s=ab

正方形的周长=边长×4
c=4a 长方形的面积=边长×边长
s=a2

平行四边形的面积=底×高
s=ah

三角形的面积=底×高÷2
s=ah÷2

梯形的面积=(上底+下底)×高÷2
s=(a+b) h÷2

圆的周长=圆周率×直径
c=d或c=2r s=

7、立体图形
(1)常见的立体图形有:长方体、正方体、圆柱体、圆锥体、球体
(2)表面积和体积:表面积:一个立体图形所有面的面积总和,叫做它的表面积。体积:一个立体图形所占空间的大小叫做它的体积。容积:一个容器所能容纳物体的体积叫做容器的容积。
(3)各种立体图形的表面积和体积计算公式
名称 表面积 体积
长方体 表面积=(长×宽+长×高+宽×高)×2
s=(ab+ah+bh) ×2 体积=长×宽×高
v=abh

直柱体的体积
=底面积×高

正方体 表面积=棱长×棱长×6
s=6a2 体积=棱长×棱长×棱长
v=a3
圆柱体 圆柱表面积=侧面积+两个底面积
圆柱体积=底面积×高

圆锥体 圆锥的体积=×底面积×高

第七部分、简单的统计知识
(1)统计图分为:条形统计图、折线统计图和扇形统计图。
(2)各统计图的特点:
条形统计图:很容易看出各种数量的多少。
折线统计图:不但很容易看出各种数量的多少,而且还能反映出数量的增减变化情况。
扇形统计图:能清楚地表示出部分量与整体总数量之间的关系。

第八部分、常见的基本数量关系式
1、部分数+部分数=总数 总数-部分数=部分数
2、较小数+相差数=较大数 较大数-较小数=相差数 较大数-相差数=较小数
“多”可以有时根据具体情况说成“贵”、“超产”、“超过”等等;“少”说成“便宜”、“减产”、“节约”等等。
3、每份数(平均数)×份数=总数 总数÷每份数(平均数)=份数 总数÷份数=每份数(平均数)
有关“每份数(平均数)、份数、总数”之间的数量关系根据题目的具体情况又有具体的说法。如:
(1)行程问题:
速度×时间=路程(一定) 成反比例,
路程÷速度=时间(一定) 成正比例 路程÷时间=速度(一定) 成正比例
(2)相遇问题:
速度和×相遇时间=路程(一定) 《成反比例》
路程÷相遇时间=速度和(一定) 成正比例 路程÷速度和=相遇时间(一定) 成正比例
往返的总路程÷往返的总时间=往返的平均速度
(3)售价问题:
单价×数量=总价(一定) 成反比例
总价÷单价=数量(一定) 成正比例 总价÷数量=单价(一定) 成正比例
(4)农业生产问题:
单产量×数量=总产量(一定) 成反比例
总产量÷数量=单产量(一定) 成正比例 总产量÷单产量=数量(一定) 成正比例
(5)工作量问题:
工作效率×工作时间=工作总量(一定) 《成反比例》
工作总量÷工作时间=工作效率(一定) 《成正比例》
工作总量÷工作效率=工作时间(一定) 《成正比例》 
4、一倍数×倍数=几倍数 几倍数÷倍数=一倍数 几倍数÷一倍数=倍数
5、解答分数(百分数)应用题的一般方法:
 (1)求分率 谁的分率=谁的数量÷单位“1”的量。
 (2)求数量 谁的数量=单位“1”的量×谁的分率。
 (3)求单位“1”(重点) 单位“1”的量=谁的数量÷谁的分率。
6、求分率(题目问题是:几分之几,百分之几)应用题及文字题的方法:
 (1)甲是乙的几分之几? 甲是乙的几倍? 甲是乙的百分之几?
方法:先把“是”字改为“÷”,然后甲÷乙
 (2)甲比乙多几分之几(百分之几)? 甲比乙少几分之几(百分之几)?
方法:(大-小)÷比字后面的数。

第九部分、补充知识
1、常见的小数、分数、百分数的互化。
分数
小数 0.5 0.25 0.75 0.2 0.4 0.6 0.8 0.125 0.375 0.625 0.875 0.1 0.05 0.04
百分数 50% 25% 75% 20% 40% 60% 80% 12.5% 37.5% 62.5% 87.5% 10% 5% 4%
2、1~20的平方值
12=1 22=4 32=9 42=16 52=25 62=36 72=49 82=64 92=81 242=576
112=121 122=144 132=169 142=196 152=225 162=256 172=289 182=324 192=361 252=625
3、1~10的立方值
13=1 23=8 33=27 43=64 53=125 63=216 73=343 83=512 93=729 103=1000
4、常见的值。

5、倒数:乘积是1的两个数互为倒数。 求一个数(0除外)的倒数,只要把分子和分母调换位置就可以了。
6、一些特殊的正反比例的关系。

(1) 圆的直径与半径成正比例 ()
圆的周长与直径(或半径)成正比例 ()
圆的面积与半径(或直径、周长)不成比例
(2)正方体的表面积与底面积成正比例。()
正方体的棱的总和与棱长成正比例。(棱的总和÷棱长=12)
正方体的体积与底面积不成比例。 ()
(3)正方形的边长与周长成正比例。()
正方形的面积与边长不成比例。()
长方形的周长一定,长(宽)与周长不成比例
(4)铺地的面积一定,方砖的面积与块数成反比例。(每份数×份数=总数(一定))
铺地的面积一定,方砖的边长与块数不成比例。
(5)订阅《少先队员》的份数和钱数成正比例。(总价÷数量=单价(一定))
(6)工作时间一定,做每个零件的时间与所做的零件个数成正比例。
(工作总量÷工作效率=工作时间(一定))
(7)如果两个数互为倒数,那么这两个数成反比例。
7、一些主要的运算法则
(1)整数加减法的法则:数位对齐 (2)小数加减法的法则:小数点对齐。
(3)整数小数乘法法则:末位对齐。 (4)同分母分数加减法法则:把分子相加减,分母不变。
 (5)异分母分数加减法法则:先通分,然后按照同分母加减法进行计算。
 (6)分数乘法的法则:用分子乘以分子得分子,分母乘以分母的分母。
 (7)分数除法的法则:甲数除以乙数(0除外)等于甲数乘以乙数的倒数。
 (8)带分数乘法法则:先把带分数化成假分数,然后再按分数乘法进行计算。

8、几个重点公式。
1、长方形周长=(长+宽)×2 长方形面积=长×宽
2、正方形周长=边长×4      正方形面积=边长×边长
3、三角形面积=底×高÷2
4、平行四边形面积=底×高  
5、梯形的面积=(上底+下底)×高÷2
6、长方体的表面积=长×宽×2+长×高×2+宽×高×2
7、长方体体积=长×宽×高 (或者:底面积×高)
8、正方体的表面积=棱长×棱长×6
9、正方体的体积=棱长×棱长×棱长(或者:底面积×高)
10、圆的面积=圆周率×半径×半径 ()
11、圆的周长=圆周率×直径 或 2×圆周率×半径 ()
12、已知圆的直径(d),求半径。半径=直径÷2()
13、已知圆的周长(c),求半径。半径=周长÷2÷3.14 ()
14、圆柱的表面积:(分三步进行计算)
 ① 圆柱侧面积=底面周长×高 ()
已知圆柱底面直径(d):  ()
已知圆柱底面半径(r):  ()
 ②底面积: ()
 ③表面积=侧面积+两个底面积 () 实际应用中注意有多少个底面
15、圆柱的体积=底面积(圆面积)×高 ()()
16、圆锥的体积=×底面积(圆面积)×高 ()()
17、环形面积=外圆面积(大圆)-内圆面积(小圆)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式