如图,△ABC为等边三角形,D、E分别是AC、BC上的点,且AD=CE,AE与BD相交于点P,BF⊥AE于F。 求证BP=2PF
如图,△ABC为等边三角形,D、E分别是AC、BC上的点,且AD=CE,AE与BD相交于点P,BF⊥AE于F。求证BP=2PF...
如图,△ABC为等边三角形,D、E分别是AC、BC上的点,且AD=CE,AE与BD相交于点P,BF⊥AE于F。 求证BP=2PF
展开
展开全部
证明三角形ABD和三角形CAE全等,再证明三角形APD和三角形ACE相似。即角APD为60度,叫BPE也为60度,直角三角形30度所对的直角边为斜边的一半。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∵正△ABC
∴AB=AC ∠BAC=∠C
∵正△ABC
∴AB=AC ∠BAC=∠C
又∵AD=CE
∴△ABD≌△CAE
∴∠ABD=∠CAE
∴∠APD=∠ABP+∠PAB=∠BAC=60°
∴∠BPF=∠APD=60°
∵Rt△BFP中∠PBF=30°
∴BP=2PF赞同0| 评论
∴AB=AC ∠BAC=∠C
∵正△ABC
∴AB=AC ∠BAC=∠C
又∵AD=CE
∴△ABD≌△CAE
∴∠ABD=∠CAE
∴∠APD=∠ABP+∠PAB=∠BAC=60°
∴∠BPF=∠APD=60°
∵Rt△BFP中∠PBF=30°
∴BP=2PF赞同0| 评论
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证30度
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询