拉格朗日中值定理证明这道题,谁会???

xbdxzjw
2012-07-11 · TA获得超过1175个赞
知道小有建树答主
回答量:503
采纳率:100%
帮助的人:165万
展开全部
即证[(x+1)lnx-(1+1)ln1)]/(x-1)>2.设f(x)=(x+1)lnx,则f'=(x+1)/x+lnx,f(x)在(1,x)满足Lagrange定理,即[(x+1)lnx-(1+1)ln1)]/(x-1)=f'(z)=(z+1)/z+lnz, 1<z<x. 只需证明(z+1)/z+lnz>2, 即证g(z)=1/z+lnz>1. g(1)=1, g'=(z-1)/z^2>0, 故g(z)递增,即g(z)>1成立,故得证。
nsjiang1
2012-07-11 · TA获得超过1.3万个赞
知道大有可为答主
回答量:8735
采纳率:94%
帮助的人:3813万
展开全部
设:f(x)=lnx-2+4/(x+1)
f'(x)=1/x-4/(x+1)^2=((x+1)^2-4x)/x(x+1)^2=(x-1)^2/x(x+1)^2>0
由拉格朗日中值定理:
f(x)-f(1)=f'(c)(x-1)>0,c在1和x之间
f(x)>f(1)=0
lnx-2+4/(x+1)
lnx>2-4/(x+1) =2(x-1)/(x+1) (x>1)
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式