2个回答
展开全部
那多了去了三角形四角形....N角形
平面几何的各个端点在同一平面上 立体几何的端点在不同平面上
- -||| 额 解释不清了 数学书上应该有的...
定义是 (网上当的)
直 线
(不定义)直线向两方无限延伸,它无端点。
射 线
在直线上某一点旁的部分。射线只有一个端点。
线 段
直线上两点间的部分。它有两个端点。
垂 线
如果两条直线相交成直角,那么称这两条直线互相垂直。其中一条叫另一条的垂线,它们的交点叫垂足。
斜 线
如果两条直线不相交成直角时,其中一条直线叫另一条直线的斜线。
点到直线的距离
从直线外一点到这条直线的垂线段的长度,叫做点到直线距离。
线段的垂直平分线
定理:线段的垂直平分线上的点和这条线段两个端点的距离相等。
平 行 线
在同一平面内不相交的两条直线叫做平行线。
平行线公理及推论
经过直线外一点,有一条而且只有一条直线和这条直线平行。
平行于同一条直线的两条直线平行。
角 的 定 义
有公共点的两条射线所组成的图形,叫做角
角 的 分 类
周角:3600 平角:1800 直角:900 锐角:00<a<900 钝角:900<a<1800
三角形的分类
按角分
锐角三角形,钝角三角形,直角三角形
按边分
等腰三角形,等边三角形,不等边三角形
三角形的角平分线
三角形一个的角的平分线和这个角的对边相交,这个角的顶点和交点之间的线段,叫做三角形的角的平分线。
三角形的中线
连结三角形一个顶点的线段,叫做三角形的中线。
三角形的高
三角形一个顶点到它的对边所在直线的垂线段,叫做三角形的高。
三角形的中位线
连结三角形两边中点的线段,叫做三角形的中位线。
全 等 三 角 形
定 义
能够完全重合的两个三角形叫全等三角形。
性 质
全等三角形的对应边、对应角、对应的角的平分线、高及中线相等。
判 定
任意三角形
直角三角形
(1)两边及夹角对应相等。记为SAS (1)一边一锐角对应相等
(2)两角和一边对应相等。记为ASAA或AAS (2)两直角边对应相等。
(3)三边对应相等。记为SSS (3)斜边、直角边对应相等(HL)
三 角 形 的 四 心
名 称
定 义 性 质
内 心
三角形三条内角平分线的交点,叫做三角形的内心(即内切圆的圆心) (1)内心到三角形三边的距离相等。
(2)三角形一个顶点与内心的连线平分这个角。
外 心
三角形三边的垂直平分线的交点,叫做三角形的外心。(即外接圆的圆心) (1)外心到三角形的三个顶点的距离相等。
(2)外心与三角形一边中点的连线必垂直该边。
(3)过外心垂直于三角形一边的直线必平分该边。
重 心
三角形三条中线的交点,叫做三角形的重心。 (1)重心到每边中点的距离等于这边中线的三分之一。
(2)三角形顶点与重心的连线必过对边中点。
垂 心
三角形三条高的交点,叫做三角形的垂心。 三角形的一个顶点与垂心连线必垂直于对边。
平面几何的各个端点在同一平面上 立体几何的端点在不同平面上
- -||| 额 解释不清了 数学书上应该有的...
定义是 (网上当的)
直 线
(不定义)直线向两方无限延伸,它无端点。
射 线
在直线上某一点旁的部分。射线只有一个端点。
线 段
直线上两点间的部分。它有两个端点。
垂 线
如果两条直线相交成直角,那么称这两条直线互相垂直。其中一条叫另一条的垂线,它们的交点叫垂足。
斜 线
如果两条直线不相交成直角时,其中一条直线叫另一条直线的斜线。
点到直线的距离
从直线外一点到这条直线的垂线段的长度,叫做点到直线距离。
线段的垂直平分线
定理:线段的垂直平分线上的点和这条线段两个端点的距离相等。
平 行 线
在同一平面内不相交的两条直线叫做平行线。
平行线公理及推论
经过直线外一点,有一条而且只有一条直线和这条直线平行。
平行于同一条直线的两条直线平行。
角 的 定 义
有公共点的两条射线所组成的图形,叫做角
角 的 分 类
周角:3600 平角:1800 直角:900 锐角:00<a<900 钝角:900<a<1800
三角形的分类
按角分
锐角三角形,钝角三角形,直角三角形
按边分
等腰三角形,等边三角形,不等边三角形
三角形的角平分线
三角形一个的角的平分线和这个角的对边相交,这个角的顶点和交点之间的线段,叫做三角形的角的平分线。
三角形的中线
连结三角形一个顶点的线段,叫做三角形的中线。
三角形的高
三角形一个顶点到它的对边所在直线的垂线段,叫做三角形的高。
三角形的中位线
连结三角形两边中点的线段,叫做三角形的中位线。
全 等 三 角 形
定 义
能够完全重合的两个三角形叫全等三角形。
性 质
全等三角形的对应边、对应角、对应的角的平分线、高及中线相等。
判 定
任意三角形
直角三角形
(1)两边及夹角对应相等。记为SAS (1)一边一锐角对应相等
(2)两角和一边对应相等。记为ASAA或AAS (2)两直角边对应相等。
(3)三边对应相等。记为SSS (3)斜边、直角边对应相等(HL)
三 角 形 的 四 心
名 称
定 义 性 质
内 心
三角形三条内角平分线的交点,叫做三角形的内心(即内切圆的圆心) (1)内心到三角形三边的距离相等。
(2)三角形一个顶点与内心的连线平分这个角。
外 心
三角形三边的垂直平分线的交点,叫做三角形的外心。(即外接圆的圆心) (1)外心到三角形的三个顶点的距离相等。
(2)外心与三角形一边中点的连线必垂直该边。
(3)过外心垂直于三角形一边的直线必平分该边。
重 心
三角形三条中线的交点,叫做三角形的重心。 (1)重心到每边中点的距离等于这边中线的三分之一。
(2)三角形顶点与重心的连线必过对边中点。
垂 心
三角形三条高的交点,叫做三角形的垂心。 三角形的一个顶点与垂心连线必垂直于对边。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询