求函数f(x)=x+1/x的单调区间和极值

佳佳_990
2012-07-12 · 超过35用户采纳过TA的回答
知道答主
回答量:78
采纳率:0%
帮助的人:74万
展开全部
f'(x)=1-1/x² 当x=1时,f'(x)=0 有最大值 最大值为f(1)=1+1=2
当x>1时,f'(x)<0 函数单调递减
当x<1时,f'(x)>0 函数单调递增
Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
greenzl
2012-07-12 · TA获得超过600个赞
知道小有建树答主
回答量:386
采纳率:0%
帮助的人:255万
展开全部
求导得 f'(x)=1-1/x^2 f'(x)=0时 x=1或-1
x<-1时 单调递增
-1<=x<0 时 单调递减
0<x<=1时 单调递减
x>1时 单调递增
极大值 x=-1时 f(x)=-2 和极小值x=1 f(x)=2.
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
西番莲d0
2012-07-12
知道答主
回答量:44
采纳率:0%
帮助的人:14.5万
展开全部
先求定义域x≠0
求导f'(x)=1-1/x²=(x+1)(x-1)/x²
由f'(x)>0得增区间(-∞,-1)和(1,+∞)
由f'(x)<0得减区间(-1,0)和(0,1)
极大值f(-1)=-2极小值f(1)=2
实际上f(x)=x+p/x(其中p>0)为对勾函数,在(-∞,-√p)和(√p,+∞)递增
在(-√p,0)和(0,√p)递减
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式