证明1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6,谢谢

仁新Q3
2012-07-12 · TA获得超过1.9万个赞
知道大有可为答主
回答量:4219
采纳率:85%
帮助的人:1906万
展开全部
 方法一:利用立方差公式
    n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)] =n^2+(n-1)^2+n^2-n =2*n^2+(n-1)^2-n

    2^3-1^3=2*2^2+1^2-2
    3^3-2^3=2*3^2+2^2-3
    4^3-3^3=2*4^2+3^2-4
    ......
    n^3-(n-1)^3=2*n^2+(n-1)^2-n

    各等式全相加
    n^3-1^3=2*(2^2+3^2+...+n^2)+[1^2+2^2+...+(n-1)^2]-(2+3+4+...+n)

    n^3-1=2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+...+(n-1)^2+n^2]-n^2-(2+3+4+...+n)

    n^3-1=3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1

    n^3-1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2

    3(1^2+2^2+...+n^2)=n^3+n^2+n(n+1)/2=(n/2)(2n^2+2n+n+1) =(n/2)(n+1)(2n+1)

    1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6
    方法二:另外一个很好玩的做法

    想像一个有圆圈构成的正三角形,
    第一行1个圈,圈内的数字为1
    第二行2个圈,圈内的数字都为2,
    以此类推
    第n行n个圈,圈内的数字都为n,
    我们要求的平方和,就转化为了求这个三角形所有圈内数字的和。设这个数为r
    下面将这个三角形顺时针旋转60度,得到第二个三角形
    再将第二个三角形顺时针旋转60度,得到第三个三角形
    然后,将这三个三角形对应的圆圈内的数字相加,
    我们神奇的发现所有圈内的数字都变成了2n+1
    而总共有几个圈呢,这是一个简单的等差数列求和
    1+2+……+n=n(n+1)/2
    于是3r=[n(n+1)/2]*(2n+1)
    r=n(n+1)(2n+1)/6
byrgq
2012-07-12 · 贡献了超过136个回答
知道答主
回答量:136
采纳率:0%
帮助的人:32.1万
展开全部
记得好像是用了立方和的一些运算
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
KZ菜鸟无敌
2012-07-12 · TA获得超过4.6万个赞
知道大有可为答主
回答量:2.5万
采纳率:26%
帮助的人:5959万
展开全部
这不需证明,这是平方和的公式!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式