如图,已知抛物线c1;y=a(x+2)2-5的顶点p,与x轴相交于a·b两点

点a在点b左边,点b的横坐标是1... 点a在点b左边,点b的横坐标是1 展开
拔地成功7481
推荐于2016-12-02 · TA获得超过5.4万个赞
知道大有可为答主
回答量:2.9万
采纳率:0%
帮助的人:3725万
展开全部
∵抛物线C4由C1绕点x轴上的点Q旋转180°得到,
∴顶点N、P关于点Q成中心对,
顶点P的为(-2,-5)
可知点N的纵坐标为5,
设点N坐标为(m,5),
作PH⊥x轴于H,作NG⊥x轴于G,
作PK⊥NG于K,
∵旋转中心Q在x轴上,
∴EF=AB=2BH=6,
∴FG=3,点F坐标为(m+3,0).
H坐标为(-2,0),K坐标为(m,-5),
根据勾股定理得:
PN2=NK2+PK2=m2+4m+104,
PF2=PH2+HF2=m2+10m+50,
NF2=52+32=34,
2∠PNF=90°时,PN2+NF2=PF2,解得m= 44/3,
∴Q点坐标为(19/3,0).
②当∠PFN=90°时,PF2+NF2=PN2,解得m=10/3,
∴Q点坐标为(2/3,0).
③∵PN>NK=10>NF,
∴∠NPF≠90°
综上所得,当Q点坐标为(19/3,0)或(2/3,0)时,以点P、N、F为顶点的三角形是直角三角形.
bbmmily7
2012-07-30
知道答主
回答量:22
采纳率:0%
帮助的人:3.4万
展开全部
∵抛物线C4由C1绕点x轴上的点Q旋转180°得到,
∴顶点N、P关于点Q成中心对,
顶点P的为(-2,-5)
可知点N的纵坐标为5,
设点N坐标为(m,5),
作PH⊥x轴于H,作NG⊥x轴于G,
作PK⊥NG于K,
∵旋转中心Q在x轴上,
∴EF=AB=2BH=6,
∴FG=3,点F坐标为(m+3,0).
H坐标为(-2,0),K坐标为(m,-5),
根据勾股定理得:
PN2=NK2+PK2=m2+4m+104,
PF2=PH2+HF2=m2+10m+50,
NF2=52+32=34,
2∠PNF=90°时,PN2+NF2=PF2,解得m= 44/3,
∴Q点坐标为(19/3,0).
②当∠PFN=90°时,PF2+NF2=PN2,解得m=10/3,
∴Q点坐标为(2/3,0).
③∵PN>NK=10>NF,
∴∠NPF≠90°
综上所得,当Q点坐标为(19/3,0)或(2/3,0)时,以点P、N、F为顶点的三角形是直角三角形.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
养星雨06W
2012-07-15 · TA获得超过229个赞
知道答主
回答量:82
采纳率:0%
帮助的人:96.6万
展开全部
图和问题呢
追问

、如图,抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,抛物线C3的顶点为M,当点P、M关于点O成中心对称时,求抛物线C3的解析式.
3、如图2,Q是x轴正半轴上一点,将抛物线C1绕点Q旋转180°后得到抛物线C4,抛物线C4的顶点为N,与x轴相交于E、F两点(点E在F的左边),当以点P、N、F为顶点的三角形是直角三角形时,求点Q的坐标。

问题补充: 

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式