在四棱锥P—ABCD中,平面PAD⊥平面ABCD,AB‖CD,△PAD是等边三角形,已知BD=2AD=8,AB=2DC=4√5

(1)设M是PC上的一点,证明平面MBD⊥平面PAD(2)求四棱锥P-ABCD的体积... (1)设M是PC上的一点,证明平面MBD⊥平面PAD
(2)求四棱锥P-ABCD的体积
展开
拉们多3277
2012-07-29 · TA获得超过5.6万个赞
知道大有可为答主
回答量:2.9万
采纳率:0%
帮助的人:4227万
展开全部
1)由勾股定理可知:△ADB为直角三角形,角ADB为直角,即BD⊥AD,
又由平面PAD⊥平面ABCD可得:BD⊥平面PAD,
因BD在平面MBD上,故平面MBD⊥平面PAD
2)四边形ABCD的面积=△ADB的面积+△CDB的面积
△CDB与△ADB具有相同的高,而底边AB=2DC,
故△CDB的面积=△ADB的面积的一半
故四边形ABCD的面积=△ADB的面积×1.5=4×8÷2×1.5=24
四棱锥P-ABCD的高=2√3
故四棱锥P-ABCD的体积=24×2√3÷3=16√3
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式