有谁会做这道数学竞赛题?写出详细的解答过程,谢谢!
设二次函数y=ax^2+bx+c(a≠0)满足:当0≤x≤1时,|y|≤1.则|a|+|b|+|c|的最大值是多少?...
设二次函数y=ax^2+bx+c(a≠0)满足:当0≤x≤1时,|y|≤1. 则|a|+|b|+|c|的最大值是多少?
展开
4个回答
展开全部
解
函数f(x)=ax²+bx+c
由题设可得
f(0)=c
f(1/2)=(a/4)+(b/2)+c
f(1)=a+b+c
解上面关于a,b,c的方程组,可得:
a=2f(1)-4f(1/2)+2f(0).
b=4f(1/2)-f(1)-3f(0)
c=f(0)
由题设可知
|f(0)|≤1, |f(1/2)|≤1 |f(1)|≤1
∴由三角不等式可得:
|a|+|b|+|c|
=|2f(1)-4f(1/2)+2f(0)|+|4f(1/2)-f(1)-3f(0)|+|f(0)|≤3|f(1)|+8|f(1/2)|+6|f(0)|≤17.
∴最大值为17
函数f(x)=ax²+bx+c
由题设可得
f(0)=c
f(1/2)=(a/4)+(b/2)+c
f(1)=a+b+c
解上面关于a,b,c的方程组,可得:
a=2f(1)-4f(1/2)+2f(0).
b=4f(1/2)-f(1)-3f(0)
c=f(0)
由题设可知
|f(0)|≤1, |f(1/2)|≤1 |f(1)|≤1
∴由三角不等式可得:
|a|+|b|+|c|
=|2f(1)-4f(1/2)+2f(0)|+|4f(1/2)-f(1)-3f(0)|+|f(0)|≤3|f(1)|+8|f(1/2)|+6|f(0)|≤17.
∴最大值为17
展开全部
首先可以确定该函数是单调的,再根据值域,再用线性规划,具体自己算
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
函数f(x)=ax²+bx+c
当0≤x≤1时
f(0)=c
f(1/2)=(a/4)+(b/2)+c
f(1)=a+b+c
解上面关于a,b,c的方程组,可得:
a=2f(1)-4f(1/2)+2f(0).
b=4f(1/2)-f(1)-3f(0)
c=f(0)
由题设可知
|f(0)|≤1, |f(1/2)|≤1 |f(1)|≤1
∴由三角不等式可得:
|a|+|b|+|c|
=|2f(1)-4f(1/2)+2f(0)|+|4f(1/2)-f(1)-3f(0)|+|f(0)|≤3|f(1)|+8|f(1/2)|+6|f(0)|≤17.
∴最大值为17
当0≤x≤1时
f(0)=c
f(1/2)=(a/4)+(b/2)+c
f(1)=a+b+c
解上面关于a,b,c的方程组,可得:
a=2f(1)-4f(1/2)+2f(0).
b=4f(1/2)-f(1)-3f(0)
c=f(0)
由题设可知
|f(0)|≤1, |f(1/2)|≤1 |f(1)|≤1
∴由三角不等式可得:
|a|+|b|+|c|
=|2f(1)-4f(1/2)+2f(0)|+|4f(1/2)-f(1)-3f(0)|+|f(0)|≤3|f(1)|+8|f(1/2)|+6|f(0)|≤17.
∴最大值为17
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询