已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为根号2,且过点(4,-根号10)点M(3,m)在双曲线上

(1)求双曲线方程(2)求证向量MF1乘以向量MF2=0(3)求△F1MF2面积... (1)求双曲线方程
(2)求证 向量MF1乘以向量MF2=0
(3)求△F1MF2面积
展开
DANNY19880708
2012-07-15
知道答主
回答量:6
采纳率:0%
帮助的人:10.7万
展开全部
(1)、设焦点在X轴,双曲线方程为:x^2/a^2-y^2/b^2=1,
c/a=√2,(a^2+b^2)=2a^2,a=b,
x^2/a^2-y^2/a^2=1,
双曲线经过点(4,-√10),
代入方程,a=√6,
∴双曲线方程为:x^2/6-y^2/6=1,这是实轴在X轴上,
而若实轴在Y轴,则点(4,-√10)代入没有实数解,故焦点不可能在Y轴。
(2)、M(3,m)在双曲线上,代入方程,
m=±√3,c=ea=√2*√6=2√3,焦点坐标:F1(-2√3,0),F2(2√3,0),
向量F1M={3+2√3,3},向量F2M={3-2√3,3},
向量F1M·向量F2M=(3+2√3)i·(3-2√3)i+3j·(3-2√3)i+(3+2√3)i·3j+3j·3j=-3+3=0,
这里i和j是水平和垂直向量的单位分量,i和j点积为0,
同理m==-√3时结果相同,
∴向量F1M·向量F2M=0,二向量互相垂直。
可以用勾股定理,证明F1M^2+F2M^2=F1F2^2,或求出直线F1M和F2M斜率的互为倒数关系来证明二向量相垂直,而推出二向量点积为0。
(3)、在△MF1F2中,|F1F2|=2c=4√3,高=√3,
∴S△MF1F2=|F1F2|*h/2=4√3*√3/2=6.
Orz飓风
2012-07-15
知道答主
回答量:10
采纳率:0%
帮助的人:6.7万
展开全部
(1)c/a=√2,得b²=a²,所以设方程x²-y²=a²,(4,-√10)代入得:a²=6,所以方程为x²-y²=6
(2)首先直线过定点M(3,m).离心率c/a=√2,则c^2/a^2=2,c^2=2a^2.所以b^2=a^2.又双曲线过点(4,-√10)
可以得到双曲线的方程为x^2/6-y^2/6=1.又点M在双曲线上,则M(3,±√3),F1(2√3,0)F2(-2√3,0)
再利用向量可得F1M⊥F2M,即向量MF1乘以向量MF2=0
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式