(a-b)² 怎么算 过程
(a-b)²=(a-b)(a-b)=a²-ab-ab+b²=a²-2ab+b²。
含有未知数的等式叫方程,也可以说是含有未知数的等式是方程。使等式成立的未知数的值,称为方程的解,或方程的根。解方程就是求出方程中所有未知数的值的过程。方程一定是等式,等式不一定是方程。不含未知数的等式不是方程。
验证:一般解方程之后,需要进行验证。验证就是将解得的未知数的值代入原方程,看看方程两边是否相等。如果相等,那么所求得的值就是方程的解。注意事项:写“解”字,等号对齐,检验。
方程依靠等式各部分的关系,和加减乘除各部分的关系(加数+加数=和,和-其中一个加数=另一个加数,差+减数=被减数,被减数-减数=差,被减数-差=减数,因数×因数=积,积÷一个因数=另一个因数,被除数÷除数=商,被除数÷商=除数,商×除数=被除数)。
扩展资料:
例1.解方程⑴(x-2)^2 =9⑵9x^2-24x+16=11。
分析:⑴此方程显然用直接开平方法好做,⑵方程左边是完全平方式(3x-4)^2,右边=11>0,所以此方程也可用直接开平方法解。
⑴解:(x-2)^2=9 ∴x-2=±√9 ∴x-2=±3 ∴x1=3+2 x2=-3+2 ∴x1=5 x2= -1。
⑵解:9x^2;-24x+16=11 ∴(3x-4)^2=11 ∴3x-4=±√11 ∴x=﹙ 4±√11﹚/3 ∴原方程的解为x1=﹙4﹢√11﹚/3,x2= ﹙4﹣√11﹚/3。
(a-b)²=(a-b)(a-b)=a²-ab-ab+b²=a²-2ab+b²。
含有未知数的等式叫方程,也可以说是含有未知数的等式是方程。使等式成立的未知数的值,称为方程的解,或方程的根。解方程就是求出方程中所有未知数的值的过程。方程一定是等式,等式不一定是方程。不含未知数的等式不是方程。
验证:一般解方程之后,需要进行验证。验证就是将解得的未知数的值代入原方程,看看方程两边是否相等。如果相等,那么所求得的值就是方程的解。注意事项:写“解”字,等号对齐,检验。
方程依靠等式各部分的关系,和加减乘除各部分的关系(加数+加数=和,和-其中一个加数=另一个加数,差+减数=被减数,被减数-减数=差,被减数-差=减数,因数×因数=积,积÷一个因数=另一个因数,被除数÷除数=商,被除数÷商=除数,商×除数=被除数)。
扩展资料:
解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。一元二次方程有四种解法:
1、直接开平方法;
2、配方法;
3、公式法;
4、分解因式法。
直接开平方法:直接开平方法就是用直接开平方求解一元二次方程的方法。
用直接开平方法解形如(x-m)^2=n (n≥0)的 方程,其解为x=±√n+m。
例1.解方程⑴(x-2)^2 =9⑵9x^2-24x+16=11。
分析:⑴此方程显然用直接开平方法好做,⑵方程左边是完全平方式(3x-4)^2,右边=11>0,所以此方程也可用直接开平方法解。
⑴解:(x-2)^2=9 ∴x-2=±√9 ∴x-2=±3 ∴x1=3+2 x2=-3+2 ∴x1=5 x2= -1。
⑵解:9x^2;-24x+16=11 ∴(3x-4)^2=11 ∴3x-4=±√11 ∴x=﹙ 4±√11﹚/3 ∴原方程的解为x1=﹙4﹢√11﹚/3,x2= ﹙4﹣√11﹚/3。
到初中就有完全平方公式了
=a²-ab-ab+b²
=a²-2ab+b²
=a²-ab-ab+b²
=a²-2ab+b²