求值:cosπ/7*cos2π/7*cos3π/7
1个回答
展开全部
解答:
cosπ/7*cos2π/7*cos3π/7
=-cosπ/7*cos2π/7*cos4π/7
=-sin(π/7)*cos(π/7)*cos(2π/7)*cos(4π/7)/sin(π/7)
=-(1/2)sin(2π/7)*cos(2π/7)*cos(4π/7)/sin(π/7)
=-(1/4)sin(4π/7)*cos(4π/7)/sin(π/7)
=-(1/8)cos(8π/7)/sin(π/7)
因为 sin(8π/7)=sin(π+π/7)=-sin(π/7)
=1/8
cosπ/7*cos2π/7*cos3π/7
=-cosπ/7*cos2π/7*cos4π/7
=-sin(π/7)*cos(π/7)*cos(2π/7)*cos(4π/7)/sin(π/7)
=-(1/2)sin(2π/7)*cos(2π/7)*cos(4π/7)/sin(π/7)
=-(1/4)sin(4π/7)*cos(4π/7)/sin(π/7)
=-(1/8)cos(8π/7)/sin(π/7)
因为 sin(8π/7)=sin(π+π/7)=-sin(π/7)
=1/8
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询