如图,△ABC是等腰直角三角形,∠ABC=90°,AB=10,D为△ABC外一点,连接AD、BD,过D作DH⊥AB,垂足为H,
如图,△ABC是等腰直角三角形,∠ABC=90°,AB=10,D为△ABC外一点,连接AD、BD,过D作DH⊥AB,垂足为H,交AC于E.若△ABD是等边三角形,求DE的...
如图,△ABC是等腰直角三角形,∠ABC=90°,AB=10,D为△ABC外一点,连接AD、BD,过D作DH⊥AB,垂足为H,交AC于E.若△ABD是等边三角形,求DE的长。
展开
2个回答
2012-10-03
展开全部
证明:∵△ABD是等边三角形,AB=10,
∴∠ADB=60°,AD=AB=10,
∵DH⊥AB,
∴AH=12AB=5,
∴DH=AD2-AH2=102-52=53,
∵△ABC是等腰直角三角形,
∴∠CAB=45°,即∠AEH=45°,
∴△AEH是等腰直角三角形,
∴EH=AH=5,
∴DE=DH-EH=5根号3-5;
∴∠ADB=60°,AD=AB=10,
∵DH⊥AB,
∴AH=12AB=5,
∴DH=AD2-AH2=102-52=53,
∵△ABC是等腰直角三角形,
∴∠CAB=45°,即∠AEH=45°,
∴△AEH是等腰直角三角形,
∴EH=AH=5,
∴DE=DH-EH=5根号3-5;
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询