设函数f(x)=√3cos²x+sinxcosx-√3/2(1)求函数f(x)的最小正周期T,并求出函数f(x)的单调递增区间;
2个回答
展开全部
解:
(1)
f(x)=√3cos²x+sinxcosx-√3/2
=(√3/2)[cos(2x)+1]+(1/2)sin(2x)-√3/2
=(√3/2)cos(2x)+(1/2)sin(2x)
=cos(π/6)cos(2x)+sin(π/6)sin(2x)
=cos(2x-π/6)
最小正周期T=2π/2=π
2kπ-π≤2x-π/6≤2kπ时,f(x)单调递增,此时kπ-5π/12≤x≤kπ+π/12
2kπ≤2x-π/6≤2kπ+π时,f(x)单调递减,此时kπ+5π/12≤x≤kπ+7π/12
函数的单调递增区间为[kπ-5π/12,kπ+π/12],单调递减区间为[kπ+5π/12,kπ+7π/12],(k∈Z)
(2)
x∈[0,3π]
-π/6≤2x-π/6≤35π/6
当2x-π/6=0,2π,4π时,f(x)取得最大值。
对应的x分别为π/12,13π/12,25π/12,
π/12+13π/12+25π/12=(1+13+25)π/12=39π/12
(1)
f(x)=√3cos²x+sinxcosx-√3/2
=(√3/2)[cos(2x)+1]+(1/2)sin(2x)-√3/2
=(√3/2)cos(2x)+(1/2)sin(2x)
=cos(π/6)cos(2x)+sin(π/6)sin(2x)
=cos(2x-π/6)
最小正周期T=2π/2=π
2kπ-π≤2x-π/6≤2kπ时,f(x)单调递增,此时kπ-5π/12≤x≤kπ+π/12
2kπ≤2x-π/6≤2kπ+π时,f(x)单调递减,此时kπ+5π/12≤x≤kπ+7π/12
函数的单调递增区间为[kπ-5π/12,kπ+π/12],单调递减区间为[kπ+5π/12,kπ+7π/12],(k∈Z)
(2)
x∈[0,3π]
-π/6≤2x-π/6≤35π/6
当2x-π/6=0,2π,4π时,f(x)取得最大值。
对应的x分别为π/12,13π/12,25π/12,
π/12+13π/12+25π/12=(1+13+25)π/12=39π/12
展开全部
f(x)=sinxcosx+√3cos²x-√3/2
=1/2sin2x+√3/2[cos2x+1]-√3/2
=1/2sin2x+√3/2cos2x
=sin(2x+π/3)
(1)函数f(x)的最小正周期T=2π/2=π
单调递增区间 2kπ-π/2≤2x+π/3≤2kπ+π/2
即2kπ-5π/6≤2x≤2kπ+π/6
单调递增区间 为 [kπ-5π/12,kπ+π/12],,(k∈Z)
(2)
∵x∈[0,3π)
∴2x+π/3∈[π/3,6π+π/3),
f(x)取到最大值的所有x的和=π/2+(π/2+2π)+(π/2+4π)=15π/2=7.5π
=1/2sin2x+√3/2[cos2x+1]-√3/2
=1/2sin2x+√3/2cos2x
=sin(2x+π/3)
(1)函数f(x)的最小正周期T=2π/2=π
单调递增区间 2kπ-π/2≤2x+π/3≤2kπ+π/2
即2kπ-5π/6≤2x≤2kπ+π/6
单调递增区间 为 [kπ-5π/12,kπ+π/12],,(k∈Z)
(2)
∵x∈[0,3π)
∴2x+π/3∈[π/3,6π+π/3),
f(x)取到最大值的所有x的和=π/2+(π/2+2π)+(π/2+4π)=15π/2=7.5π
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询