求函数y=log2(x²-4x)的单调递增区间

精灵俊
2012-07-17
知道答主
回答量:15
采纳率:0%
帮助的人:5.2万
展开全部
函数y=log(a)X,定义域是x>0。当a>1时,是增函数,0<a<1时,是减函数。
依据定义域要求,有x²-4x>0,即x>4或x<0。
当x>4时,t=x²-4x是增函数,这样y=log2(x²-4x)也是增函数。
当x<0时,t=x²-4x是减函数,这样y=log2(x²-4x)也是减函数。
所以单调递增区间是:x>4 或(4,+∞)。

参考资料: http://baike.baidu.com/view/331649.htm

jerryvan001
2012-07-17 · TA获得超过3473个赞
知道小有建树答主
回答量:1173
采纳率:0%
帮助的人:418万
展开全部
此题考察复合函数的单调性,顺带考察二次函数的单调区间知识点:

本身对数函数的底为2,其函数是单调增的,此复合函数具有同增同减性,
只要求内函数的增区间即可
t=x²-4x=(x-2)²+4 >0,二次函数t:
开口向上,
对称轴x=2
顶点(2,4) (二次函数在对称轴左侧为减函数,在右侧为增函数)

x>2时,t=x²-4是增函数
x<2时,t=x²-4是减函数
函数y=log2(x²-4x)的单调递增区间(2,+∞)
(同增同减原理懂了么)
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
钟馗降魔剑2
2012-07-17 · TA获得超过2.4万个赞
知道大有可为答主
回答量:1万
采纳率:74%
帮助的人:3991万
展开全部
x²-4x>0,那么x>4,或x<0

则函数y=log2(x²-4x)的定义域为(-∞,0)∪(4,+∞)
函数y=log2(x²-4x)是一个复合函数,且函数y=log2t在定义域内单调递增
那么只需求函数y=x²-4x的单调递增区间即可
而y=x²-4x=(x-2)²-4
所以单调递增区间为(4,+∞)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
feidao2010
2012-07-17 · TA获得超过13.7万个赞
知道顶级答主
回答量:2.5万
采纳率:92%
帮助的人:1.6亿
展开全部
解答:
复合函数的单调性
t=x²-4x>0
x>4或x<0
x>4时,t=x²-4是增函数
x<0时,t=x²-4是减函数
y=log2 (t)在(0,+∞)上是增函数
利用“同增异减”法则
函数y=log2(x²-4x)的单调递增区间(4,+∞)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
暴宇荫0A
2012-07-18
知道答主
回答量:29
采纳率:0%
帮助的人:12.2万
展开全部
将真数配方(x-2)^2-4
a>0所以为增 增增为增 所以当x≥2为增函数
真数要大于0 所以x>4
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(5)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式