
在梯形ABCD中,AD平行BC,∠B=40°,∠C=50°,M、N分别是BC、AD边的中点,BC>AD,求证MN=1/2(BC-AD)
3个回答
展开全部
过N做NE.NF平行于AB,CD
AN=BE=ND=CF
ENF直角三角形
EM=BM-BE=BM-AN=BM-BF=CM-BF=MF
故MN是直角三角形ENF的中线
MN=1/2EF=1/2(BM-BE+CM-BF)=1/2(BC-AD)
AN=BE=ND=CF
ENF直角三角形
EM=BM-BE=BM-AN=BM-BF=CM-BF=MF
故MN是直角三角形ENF的中线
MN=1/2EF=1/2(BM-BE+CM-BF)=1/2(BC-AD)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询