一道高数题(请各位用图片写出详细过程上传到网上,谢谢!)
1个回答
展开全部
∫(π/3,π/4) x/sin²xdx
=-∫(π/3,π/4) xdcotx
=-(√3π/9-π/4)+∫(π/3,π/4) cotxdx
=-√3π/9+π/4+∫(π/3,π/4) cosx/sinx dx
=-√3π/9+π/4+∫(π/3,π/4) 1/sinx dsinx
=-√3π/9+π/4+ln(sin(π/3))-ln(sin(π/4))
=-√3π/9+π/4+ln(√3/2)-ln(√2/2)
=-√3π/9+π/4+ln(√6/2)
=-∫(π/3,π/4) xdcotx
=-(√3π/9-π/4)+∫(π/3,π/4) cotxdx
=-√3π/9+π/4+∫(π/3,π/4) cosx/sinx dx
=-√3π/9+π/4+∫(π/3,π/4) 1/sinx dsinx
=-√3π/9+π/4+ln(sin(π/3))-ln(sin(π/4))
=-√3π/9+π/4+ln(√3/2)-ln(√2/2)
=-√3π/9+π/4+ln(√6/2)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询