计算∫∫∫xyzdxdydz,其中 ∏x^2+y^2+z^2=1及三个坐标面所围成的在第一卦限内的闭区域
3个回答
展开全部
计算Ω∫∫∫xyzdxdydz,其中 Ω:x²+y²+z²=1及三个坐标面所围成的在第一卦限内的闭区域
解:积分域Ω是一个球心在原点,半径为1的球在第一挂限内的部分,用球坐标计算比较方便。
(0≦θ≦π/2,0≦φ≦π/2,0≦r≦1).
Ω∫∫∫xyzdxdydz=Ω∫∫∫[(rsinφcosθ)(rsinφsinθ)(rcosφ)r²sinφdrdθdφ
=Ω∫∫∫[(r^5)sin³φcosφsinθcosθdrdθdφ=[0,1]∫(r^5)dr[0,π/2]∫sin³φd(sinφ)[0,π/2]∫sinθd(sinθ)
={[(r^6)/6]︱[0,1]}{[(1/4)sin⁴φ]︱[0,π/2]}{[(1/2)sin²θ]︱[0,π/2]}
=(1/6)(1/4)(1/2)=1/48
解:积分域Ω是一个球心在原点,半径为1的球在第一挂限内的部分,用球坐标计算比较方便。
(0≦θ≦π/2,0≦φ≦π/2,0≦r≦1).
Ω∫∫∫xyzdxdydz=Ω∫∫∫[(rsinφcosθ)(rsinφsinθ)(rcosφ)r²sinφdrdθdφ
=Ω∫∫∫[(r^5)sin³φcosφsinθcosθdrdθdφ=[0,1]∫(r^5)dr[0,π/2]∫sin³φd(sinφ)[0,π/2]∫sinθd(sinθ)
={[(r^6)/6]︱[0,1]}{[(1/4)sin⁴φ]︱[0,π/2]}{[(1/2)sin²θ]︱[0,π/2]}
=(1/6)(1/4)(1/2)=1/48
展开全部
首先做出图形,即第一卦限中的四分之一球。 若采用球面坐标,r是原点到积分边界的范围,r的最大值由边界曲面确定(将x.y.z的参数形式带入解析式,可得r=λ〈λ为常数或θ与φ的函数〉,即最大值。) φ是积分区域边界曲面上向径与Z轴正向的夹角的范围(可取到0~π)。 把积分区域向xoy平面做投影,Θ是所得平面区域边界曲线上点的向径与X轴正向夹角的取值范围(最大取0~2π)。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
采用球面坐标
0≤θ≤∏/2
0≤φ≤∏/2
0≤r≤1
0≤θ≤∏/2
0≤φ≤∏/2
0≤r≤1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询