已知函数f(x)=3cos^2x+2cosx*sinx+sin^2x 求详细解答过程
3个回答
展开全部
f(x)=3(cosx)^3+2sinxcosx+(sinx)^2
=sin2x+2(cosx)^2+1
=sin2x+cos2x+2
=√2sin(2x+π/4)+2
(1)最小正周期为T=2π/2=π,周期为kπ,k是不为0的整数。
(2)2kπ-π/2<2x+π/4<2kπ+π/2,则kπ-3π/8<x<kπ+π/8,单调递增区间为(kπ-3π/8,kπ+π/8)。
2kπ+π/2<2x+π/4<2kπ+3π/2,则kπ+π/8<x<kπ+5π/8,单调递减区间为(kπ+π/8,kπ+5π/8)。
(3)当2x+π/4=2kπ+π/2,即x=kπ+π/8时,f(x)取得最大值为√2+2。
=sin2x+2(cosx)^2+1
=sin2x+cos2x+2
=√2sin(2x+π/4)+2
(1)最小正周期为T=2π/2=π,周期为kπ,k是不为0的整数。
(2)2kπ-π/2<2x+π/4<2kπ+π/2,则kπ-3π/8<x<kπ+π/8,单调递增区间为(kπ-3π/8,kπ+π/8)。
2kπ+π/2<2x+π/4<2kπ+3π/2,则kπ+π/8<x<kπ+5π/8,单调递减区间为(kπ+π/8,kπ+5π/8)。
(3)当2x+π/4=2kπ+π/2,即x=kπ+π/8时,f(x)取得最大值为√2+2。
展开全部
解:
f(x)=3cos^2x+2cosx*sinx+sin^2x
=2cos^2x+sin2x+1
=cos2x+sin2x+2
=√2*sin(2x+π/4)+2
∴T=2π/2=π
2kπ-π/2≤2x+π/4≤2kπ+π/2时,f(x)单调递增 x∈[kπ-3π/8,kπ+π/8]
∴单调增区间为[kπ-3π/8,kπ+π/8]
单调减区间为[kπ+π/8,kπ+5π/8]
2x+π/4=2kπ+π/2
x=kπ+π/8时
f(x)max=2+√2
f(x)=3cos^2x+2cosx*sinx+sin^2x
=2cos^2x+sin2x+1
=cos2x+sin2x+2
=√2*sin(2x+π/4)+2
∴T=2π/2=π
2kπ-π/2≤2x+π/4≤2kπ+π/2时,f(x)单调递增 x∈[kπ-3π/8,kπ+π/8]
∴单调增区间为[kπ-3π/8,kπ+π/8]
单调减区间为[kπ+π/8,kπ+5π/8]
2x+π/4=2kπ+π/2
x=kπ+π/8时
f(x)max=2+√2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询