高一三角函数简单化简问题
谢谢了,50分送上!利用和差角公式化简:1.3√15sinx+3√5cosx2.√2(sinx-cosx)3.√3sinx+cosx4.(√2/4)sin(π/4-x)+...
谢谢了,50分送上!利用和差角公式化简:1.3√15sinx+3√5cosx2.√2(sinx-cosx)3.√3sinx+cosx4.(√2/4)sin(π/4-x)+√6/4cos(π/4-x)5.sin347°cos148°+sin77°cos58°6.sin164°sin224°+sin254°sin314°后面这题请帮我验证下cos(a-b)cos(b-r)-sin(a-b)sin(b-r)化简是否等于cos(a-r)?
展开
3个回答
展开全部
1.3√15sinx+3√5cosx2=6√5(√3/2sinx+1/2cosx)=6√5(sinxcosπ/6+cosxsinπ/6)=6√5sin(x+π/6)
2.√2(sinx-cosx)=2(√2/2sinx-√2/2cosx)=2(sinxcosπ/4-cosxsinπ/4)=2sin(x-π/4)
3.√3sinx+cosx=2(√3/2sinx+1/2cosx)=2(sinxcosπ/6+cosxsinπ/6)=2sin(x+π/6)
4.(√2/4)sin(π/4-x)+√6/4cos(π/4-x)=√2/2(1/2sin(π/4-x)+√3/2cos(π/4-x))=√2/2(sin(π/4-x)cosπ/6+cos(π/4-x)sinπ/6=√2/2sin(π/4-x+π/6)=√2/2sin(5π/12-x)=√2/2sin(π/2-(π/12+x))=√2/2cos(π/12+x)
5.sin347°cos148°+sin77°cos58°=sin13°cos32°+sin(45°+32°)cos(13°+45°)
sin(45°+32°)=sin45°cos32°+cos45°sin32°=√2/2(cos32°+sin32°)
cos(13°+45°)=cos13°cos45°-sin13°sin45°=√2/2(cos13°-sin13°)
sin(45°+32°)cos(13°+45°)=1/2(cos32°cos13°-cos32°sin13°+sin32°cos13°-sin13°sin32°)
sin13°cos32°+sin(45°+32°)cos(13°+45°)=1/2(cos32°cos13°+cos32°sin13°+sin32°cos13°-sin13°sin32°)=1/2((cos32°cos13°-sin13°sin32°)+(cos32°sin13°+sin32°cos13°))=1/2(cos45°+sin45°)=√2/2
6.sin164°sin224°+sin254°sin314°=sin(180°-16°)sin(270°-46°)+sin(270°-16°)sin(360°-46°)=-sin16°cos46°+cos16°sin46°=sin(46°-16°)=sin30°=1/2
另外cos(a-b)cos(b-r)-sin(a-b)sin(b-r)=cos[(a-b)+(b-r)]=cos(a-r)
2.√2(sinx-cosx)=2(√2/2sinx-√2/2cosx)=2(sinxcosπ/4-cosxsinπ/4)=2sin(x-π/4)
3.√3sinx+cosx=2(√3/2sinx+1/2cosx)=2(sinxcosπ/6+cosxsinπ/6)=2sin(x+π/6)
4.(√2/4)sin(π/4-x)+√6/4cos(π/4-x)=√2/2(1/2sin(π/4-x)+√3/2cos(π/4-x))=√2/2(sin(π/4-x)cosπ/6+cos(π/4-x)sinπ/6=√2/2sin(π/4-x+π/6)=√2/2sin(5π/12-x)=√2/2sin(π/2-(π/12+x))=√2/2cos(π/12+x)
5.sin347°cos148°+sin77°cos58°=sin13°cos32°+sin(45°+32°)cos(13°+45°)
sin(45°+32°)=sin45°cos32°+cos45°sin32°=√2/2(cos32°+sin32°)
cos(13°+45°)=cos13°cos45°-sin13°sin45°=√2/2(cos13°-sin13°)
sin(45°+32°)cos(13°+45°)=1/2(cos32°cos13°-cos32°sin13°+sin32°cos13°-sin13°sin32°)
sin13°cos32°+sin(45°+32°)cos(13°+45°)=1/2(cos32°cos13°+cos32°sin13°+sin32°cos13°-sin13°sin32°)=1/2((cos32°cos13°-sin13°sin32°)+(cos32°sin13°+sin32°cos13°))=1/2(cos45°+sin45°)=√2/2
6.sin164°sin224°+sin254°sin314°=sin(180°-16°)sin(270°-46°)+sin(270°-16°)sin(360°-46°)=-sin16°cos46°+cos16°sin46°=sin(46°-16°)=sin30°=1/2
另外cos(a-b)cos(b-r)-sin(a-b)sin(b-r)=cos[(a-b)+(b-r)]=cos(a-r)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询