5、如图,Rt△OAB的斜边OA在x轴的正半轴上,直角的顶点B在第一象限内,已知点A(10,0),△OAB的面积为20

5、如图,Rt△OAB的斜边OA在x轴的正半轴上,直角的顶点B在第一象限内,已知点A(10,0),△OAB的面积为20。(1)求B点的坐标;(2)求过O、B、A三点抛物线... 5、如图,Rt△OAB的斜边OA在x轴的正半轴上,直角的顶点B在第一象限内,已知点A(10,0),△OAB的面积为20。
(1)求B点的坐标;
(2)求过O、B、A三点抛物线的解析式;
(3)判断该抛物线的顶点P与△OAB的外接圆的位置关系,
并说明理由。
2004嘉兴中考
展开
qsmm
2012-07-19 · TA获得超过267万个赞
知道顶级答主
回答量:28.3万
采纳率:90%
帮助的人:12.9亿
展开全部
分析:(1)过B作BC⊥OA于C,根据三角形OAB的面积可求出BC=4,然后可设OC=x,根据射影定理可得出BC^2=OC•AC,据此可求出x的值,即可得出B点坐标;
(2)已知了三点的坐标,可用待定系数法求出抛物线的解析式;
(3)根据抛物线和圆的对称性可知,P和三角形OAB的外心必在抛物线的对称轴上,因此本题只需判断P点的纵坐标的绝对值与OA的一半的大小关系,如果|yP|大于5,则顶点P在圆外,如果|yP|小于5,则在园内,如果等于5,则在圆上.

解:(1)过B作BC⊥OA于C,
∵S△OAB=1/2OA•BC=20,OA=10,
∴BC=4
在直角三角形ABO中,BC⊥OA,
设OC=x,根据射影定理有:
BC^2=OC•AC,即16=x(10-x),解得x=2,x=8
因此B(2,4);

(2)设抛物线的解析式为y=ax(x-10),
已知抛物线过B(2,4),有:
a×2×(2-10)=4,a=-1/4
∴所求的抛物线解析式为:y=-1/4x^2+5/2x;

(3)由(2)可知:y=-1/4(x-5)^2+25/4
因此P(5,25/4 )
∵25/4 >5
∴顶点P在外接圆外.
匿名用户
2012-07-19
展开全部
图呢???
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式