5、如图,Rt△OAB的斜边OA在x轴的正半轴上,直角的顶点B在第一象限内,已知点A(10,0),△OAB的面积为20
5、如图,Rt△OAB的斜边OA在x轴的正半轴上,直角的顶点B在第一象限内,已知点A(10,0),△OAB的面积为20。(1)求B点的坐标;(2)求过O、B、A三点抛物线...
5、如图,Rt△OAB的斜边OA在x轴的正半轴上,直角的顶点B在第一象限内,已知点A(10,0),△OAB的面积为20。
(1)求B点的坐标;
(2)求过O、B、A三点抛物线的解析式;
(3)判断该抛物线的顶点P与△OAB的外接圆的位置关系,
并说明理由。
2004嘉兴中考 展开
(1)求B点的坐标;
(2)求过O、B、A三点抛物线的解析式;
(3)判断该抛物线的顶点P与△OAB的外接圆的位置关系,
并说明理由。
2004嘉兴中考 展开
展开全部
分析:(1)过B作BC⊥OA于C,根据三角形OAB的面积可求出BC=4,然后可设OC=x,根据射影定理可得出BC^2=OC•AC,据此可求出x的值,即可得出B点坐标;
(2)已知了三点的坐标,可用待定系数法求出抛物线的解析式;
(3)根据抛物线和圆的对称性可知,P和三角形OAB的外心必在抛物线的对称轴上,因此本题只需判断P点的纵坐标的绝对值与OA的一半的大小关系,如果|yP|大于5,则顶点P在圆外,如果|yP|小于5,则在园内,如果等于5,则在圆上.
解:(1)过B作BC⊥OA于C,
∵S△OAB=1/2OA•BC=20,OA=10,
∴BC=4
在直角三角形ABO中,BC⊥OA,
设OC=x,根据射影定理有:
BC^2=OC•AC,即16=x(10-x),解得x=2,x=8
因此B(2,4);
(2)设抛物线的解析式为y=ax(x-10),
已知抛物线过B(2,4),有:
a×2×(2-10)=4,a=-1/4
∴所求的抛物线解析式为:y=-1/4x^2+5/2x;
(3)由(2)可知:y=-1/4(x-5)^2+25/4
因此P(5,25/4 )
∵25/4 >5
∴顶点P在外接圆外.
(2)已知了三点的坐标,可用待定系数法求出抛物线的解析式;
(3)根据抛物线和圆的对称性可知,P和三角形OAB的外心必在抛物线的对称轴上,因此本题只需判断P点的纵坐标的绝对值与OA的一半的大小关系,如果|yP|大于5,则顶点P在圆外,如果|yP|小于5,则在园内,如果等于5,则在圆上.
解:(1)过B作BC⊥OA于C,
∵S△OAB=1/2OA•BC=20,OA=10,
∴BC=4
在直角三角形ABO中,BC⊥OA,
设OC=x,根据射影定理有:
BC^2=OC•AC,即16=x(10-x),解得x=2,x=8
因此B(2,4);
(2)设抛物线的解析式为y=ax(x-10),
已知抛物线过B(2,4),有:
a×2×(2-10)=4,a=-1/4
∴所求的抛物线解析式为:y=-1/4x^2+5/2x;
(3)由(2)可知:y=-1/4(x-5)^2+25/4
因此P(5,25/4 )
∵25/4 >5
∴顶点P在外接圆外.
2012-07-19
展开全部
图呢???
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询