函数f(x)=(log2(x)-1)/(log2(x)+1),若f(x1)+f(2x2)=1 (其中x1、x2均大于2),则f(x1*x2)的最小值为?

请不要复制网上的答案,是错的!谢谢!... 请不要复制网上的答案,是错的!谢谢! 展开
 我来答
force665
2012-07-19 · TA获得超过1994个赞
知道小有建树答主
回答量:1087
采纳率:0%
帮助的人:501万
展开全部
化简f(x)=1-2/(log2(x)+1)
f(x1)+f(2x2)
=2-2/(log2(x1)+1)-2/(log2(2x2)+1)
=2-2/(log2(x1)+1)-2/(log2(x2)+2)
=2-2*(log2(x1)+log2(x2)+3)/[(log2(x1)+1)(log2(x2)+2)]=1

1/2=(log2(x1)+log2(x2)+3)/【(log2(x1)+1)(log2(x2)+2)】
(对分母用基本不等式ab<=[(a+b)/2]^2)
>=(log2(x1)+log2(x2)+3)/【(log2(x1)+log2(x2)+3)/2】^2
=4/(log2(x1)+log2(x2)+3)
解得log2(x1)+log2(x2)>=5
当且仅当log2(x1)+1=log2(x2)+2,即x1=2x2时取等号
f(x1x2)=1-2/(log(x1x2)+1)>=1-2/(5+1)=2/3
wt桃
2012-07-19 · TA获得超过465个赞
知道答主
回答量:115
采纳率:0%
帮助的人:78.5万
展开全部
f(x)=(log2(x)-1)/(log2(x)+1);
f(x1)=(log2(x1)-1)/(log2(x1)+1);
f(2x2)=(log2(2x2)-1)/(log2(2x2)+1);
代入f(x1)+f(2x2)=1得到(log2(x1)-1)/(log2(x1)+1)+(log2(2x2)-1)/(log2(2x2)+1)=1,
通分化简得到log2(x1)·log2(2x2)-4=log2(x1·x2)
因为x1、x2均大于2,
所以log2(x1)>1,log2(2x2)>2;
所以log2(x1)·log2(2x2)-4>2;
所以log2(x1·x2)>-2.................(1)
因为x1、x2均大于2,
所以log2(x1·x2)>2..................(2)
结合(1)(2)得到log2(x1·x2)的范围为log2(x1·x2)>2。
f(x1·x2)=(log2(x1·x2)-1)/(log2(x1·x2)+1)
=1-2/[log2(x1·x2)+1]..............【分离常数项】
因为log2(x1·x2)>2
所以log2(x1·x2)+1>3
所以0<2/[log2(x1·x2)+1]<2/3
所以-2/3<-2/[log2(x1·x2)+1]<0
所以1/3<1-2/[log2(x1·x2)+1]<1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式