求解一道数学题,据说是初中的几何题。第二问是求BG、AF和FG的数量关系 5

happysue1
2012-07-19 · TA获得超过2.5万个赞
知道大有可为答主
回答量:2082
采纳率:0%
帮助的人:1923万
展开全部

(1)证明:∵等腰直角三角形ABC中,∠BAC=90°,

∴AC=AB,∠ACB=∠ABC=45°,

又∵AD=AE,∠CAD=∠BAE,

∴△ACD≌△ABE(SAS),

∴∠1=∠3,

∵∠BAC=90°,

∴∠3+∠2=90°,∠1+∠4=90°,

∴∠4+∠3=90°

∵FG⊥CD,

∴∠CMF+∠4=90°,

∴∠3=∠CMF,

∴∠GEM=∠GME,

∴EG=MG,△EGM为等腰三角形.

(2)答:线段BG、AF与FG的数量关系为BG=AF+FG.

证明:过点B作AB的垂线,交GF的延长线于点N.

∵BN⊥AB,∠ABC=45°,

∴∠FBN=45°=∠FBA.

∵FG⊥CD,

∴∠BFN=∠CFM=90°-∠DCB,

∵AF⊥BE,

∴∠BFA=90°-∠EBC,∠5+∠2=90°,

由(1)可得∠DCB=∠EBC,

∴∠BFN=∠BFA,

又∵BF=BF,

∴△BFN≌△BFA(ASA),

∴NF=AF,∠N=∠5,

又∵∠GBN+∠2=90°,

∴∠GBN=∠5=∠N,

∴BG=NG,

又∵NG=NF+FG,

∴BG=AF+FG.

望采纳,谢谢 

wchhlbt
2012-07-19 · TA获得超过109个赞
知道答主
回答量:75
采纳率:100%
帮助的人:73.5万
展开全部
1)∵等腰直角三角形ABC中,∠BAC=90°,∴AC=AB,∠ACB=∠ABC=45°,又∵AD=AE,∠CAD=∠BAE,∴△ACD≌△ABE(SAS),∴∠1=∠3,∵∠BAC=90°,∴∠3+∠2=90°,∠1+∠4=90°,∴∠4+∠3=90°∵FG⊥CD,∴∠CMF+∠4=90°,∴∠3=∠CMF,∴∠GEM=∠GME,∴EG=MG,△EGM为等腰三角形.(2)线段BG、AF与FG的数量关系为BG=AF+FG.过点B作AB的垂线,交GF的延长线于点N.(见右图)∵BN⊥AB,∠ABC=45°,∴∠FBN=45°=∠FBA.∵FG⊥CD,∴∠BFN=∠CFM=90°-∠DCB,∵AF⊥BE,∴∠BFA=90°-∠EBC ,∠5+∠2=90°,由(1)可得∠DCB=∠EBC,∴∠BFN=∠BFA,又∵BF=BF,∴△BFN≌△BFA(ASA),∴NF=AF,∠N=∠5,又∵∠GBN+∠2=90°,∴∠GBN=∠5=∠N,∴BG=NG,又∵NG=NF+FG,∴BG=AF+FG.打字好辛苦!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
爱哭鬼886
2012-07-19
知道答主
回答量:32
采纳率:0%
帮助的人:15万
展开全部
解:(1)∵等腰直角三角形ABC中,∠BAC=90°,∴AC=AB,∠ACB=∠ABC=45°,又∵AD=AE,∠CAD=∠BAE,∴△ACD≌△ABE(SAS),∴∠1=∠3,∵∠BAC=90°,∴∠3+∠2=90°,∠1+∠4=90°,∴∠4+∠3=90°∵FG⊥CD,∴∠CMF+∠4=90°,∴∠3=∠CMF,∴∠GEM=∠GME,∴EG=MG,△EGM为等腰三角形.(2)线段BG、AF与FG的数量关系为BG=AF+FG.过点B作AB的垂线,交GF的延长线于点N.(见右图)∵BN⊥AB,∠ABC=45°,∴∠FBN=45°=∠FBA.∵FG⊥CD,∴∠BFN=∠CFM=90°-∠DCB,∵AF⊥BE,∴∠BFA=90°-∠EBC ,∠5+∠2=90°,由(1)可得∠DCB=∠EBC,∴∠BFN=∠BFA,又∵BF=BF,∴△BFN≌△BFA(ASA),∴NF=AF,∠N=∠5,又∵∠GBN+∠2=90°,∴∠GBN=∠5=∠N,∴BG=NG,又∵NG=NF+FG,∴BG=AF+FG.望能采纳噢~

参考资料: http://zhidao.baidu.com/question/363311308.html

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
527968556
2012-07-19
知道答主
回答量:9
采纳率:0%
帮助的人:1.3万
展开全部
线段BG、AF与FG的数量关系为BG=AF+FG
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
最后嘀胜利
2012-07-19
知道答主
回答量:41
采纳率:0%
帮助的人:9万
展开全部
额,BG=AF+FG
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式