如图,E是矩形ABCD的边BC上一点,EF⊥AE,EF分别交AC,CD于点M,F,BG⊥AC,垂足为C,BG交AE于点H.
如图,E是矩形ABCD的边BC上一点,EF⊥AE,EF分别交AC,CD于点M,F,BG⊥AC,垂足为C,BG交AE于点H.(1)求证:△ABE∽△ECF;(2)找出与△A...
如图,E是矩形ABCD的边BC上一点,EF⊥AE,EF分别交AC,CD于点M,F,BG⊥AC,垂足为C,BG交AE于点H.
(1)求证:△ABE∽△ECF;
(2)找出与△ABH相似的三角形,并证明;
(3)若E是BC中点,BC=2AB,AB=2,求EM的长.
BG⊥AC ,垂足为G,打错了 展开
(1)求证:△ABE∽△ECF;
(2)找出与△ABH相似的三角形,并证明;
(3)若E是BC中点,BC=2AB,AB=2,求EM的长.
BG⊥AC ,垂足为G,打错了 展开
8个回答
展开全部
追问
抄的菁优网!
追答
是的,他们的答案也是抄的。
但是如果你哪步不清楚你可以追问。
展开全部
(1)证明:∵四边形ABCD是矩形
∴∠ABE=∠ECF=90°
∵AE⊥EF,∠AEB+∠FEC=90°
∴∠AEB+∠BEA=90°
∴∠BAE=∠CEF
∴△ABE∽△ECF
(2)△ABH∽△ECM
证明:∵BG⊥AC
∴∠ABG+∠BAG=90°
∴∠ABH=∠ECM
由(1)知,∠BAH=∠CEM
∴△ABH∽△ECM
(3)解:作MR⊥BC,垂足为R
∵AB=BE=EC=2
∴AB:BC=MR:RC=1:2,∠AEB=45°
∴∠MER=45°,CR=2MR
∴MR=ER=1/2RC=2/3
∴EM=MR/sin45°=2√2/3
这道题是我们这(山东泰安)2012年中考题的倒数第二道,答案是泰山晚报2012年6月15日的
∴∠ABE=∠ECF=90°
∵AE⊥EF,∠AEB+∠FEC=90°
∴∠AEB+∠BEA=90°
∴∠BAE=∠CEF
∴△ABE∽△ECF
(2)△ABH∽△ECM
证明:∵BG⊥AC
∴∠ABG+∠BAG=90°
∴∠ABH=∠ECM
由(1)知,∠BAH=∠CEM
∴△ABH∽△ECM
(3)解:作MR⊥BC,垂足为R
∵AB=BE=EC=2
∴AB:BC=MR:RC=1:2,∠AEB=45°
∴∠MER=45°,CR=2MR
∴MR=ER=1/2RC=2/3
∴EM=MR/sin45°=2√2/3
这道题是我们这(山东泰安)2012年中考题的倒数第二道,答案是泰山晚报2012年6月15日的
追问
抄的菁优网!
追答
我是看的报纸
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)证明:∵四边形ABCD是矩形
∴∠ABE=∠ECF=∠ABC=90°
又∵AE⊥EF,∠AEB+∠FEC=90°
∴∠AEB+∠AEB=90°
∴∠BAE=∠FEC
∴△ABE∽△ECF
(2)∵BG⊥AC
∴∠ABG+∠BAG=90°
又∵∠ABC=90°
∴ ∠BAG+∠ACB=90°
∴∠ABG=∠ACB
又∵∠BAH=∠CEM
∴△ABH∽△ECM
∴∠ABE=∠ECF=∠ABC=90°
又∵AE⊥EF,∠AEB+∠FEC=90°
∴∠AEB+∠AEB=90°
∴∠BAE=∠FEC
∴△ABE∽△ECF
(2)∵BG⊥AC
∴∠ABG+∠BAG=90°
又∵∠ABC=90°
∴ ∠BAG+∠ACB=90°
∴∠ABG=∠ACB
又∵∠BAH=∠CEM
∴△ABH∽△ECM
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
图都不画,不够诚意
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
是“抄菁优网的”而不是抄的菁优网
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询