已知sin(α+π/3)+sinα=-(4根号3)/5,-π/2<α<0,求cosα
展开全部
∵sin(α+π/3)+sinα=-(4√3)/5
∴sinαcosπ/3+cosαsinπ/3+sinα=-4√3/5
∴3/2*sinα+√3/2*cosα=-4√3/5
∴√3/2sinα+1/2*cosα=-4/5
∴sin(α+π/6)=-4/5
∵-π/2<α<0
∴-π/3<α+π/6<π/6
∴cos(α+π/6)=3/5
∴cosα=cos[(α+π/6)-π/6]
=cos(α+π/6)cosπ/6+sin(α+π/6)sinπ/6
=3/5*√3/3-4/5*1/2
=(3√3-4)/6
∴sinαcosπ/3+cosαsinπ/3+sinα=-4√3/5
∴3/2*sinα+√3/2*cosα=-4√3/5
∴√3/2sinα+1/2*cosα=-4/5
∴sin(α+π/6)=-4/5
∵-π/2<α<0
∴-π/3<α+π/6<π/6
∴cos(α+π/6)=3/5
∴cosα=cos[(α+π/6)-π/6]
=cos(α+π/6)cosπ/6+sin(α+π/6)sinπ/6
=3/5*√3/3-4/5*1/2
=(3√3-4)/6
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询