高数证明题,求过程

chzhn
2012-07-21 · TA获得超过5342个赞
知道大有可为答主
回答量:2951
采纳率:0%
帮助的人:1462万
展开全部
f(x) = sin^3x - x^3cosx
f'(x) = 3sin^2xcosx - 3x^2cosx + x^3 sinx
= 3cosx (sin^2x - x^2) + x^3 sinx
因为sinx > x - x^3/6
所以
f'(x) = 3cosx(sinx - x)(sinx+x) +x^3sinx
>-(sinx+x)cosx * x^3 / 2 + x^3 sinx
=x^3/2 [ 2sinx - cosx(x+sinx)]
所以只需证明2sinx > cosx(x+sinx)即可
由于tanx = x+x^3/3+2x^5/15 + .....
所以tanx > x+x^3/3
所以2tanx > 2x+ 2/3*x^3
而x+sinx<2x
所以2tanx > x+sinx
所以2sinx - cosx(x+sinx) > 0
所以f'(x) > 0
所以f(x) > f(0) = 0
所以[sinx/x]^3 >= cosx
追问
你好,很感谢你详细的解答!我想问一下,这里不用讨论x的正负吗?就是把sinx -x > - x^3/6代入f'(x)里面的时候,x的正负不确定,那么3cosx(sinx+x) 的正负也不确定,f'(x)是取大于还是小于呢?还是我想多了?
sw5372
2012-07-21 · 超过15用户采纳过TA的回答
知道答主
回答量:176
采纳率:0%
帮助的人:62.9万
展开全部
高数证明题,需要过程 证明:F(x)=∫(0,x)(2t-x)f(t)dt =2=2xf(x)-[(x) ∫(0,x)f(t)dt+x(∫(0,x)f(t)dt) ] =2xf(x
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式