数学提问
3个回答
展开全部
1+2+3+...+n=n(n+1)/2
3/(1+2+3+...+n)=6/[n(n+1)]=6*[1/n-1/(n+1)]
3+3/(1+2)+3/(1+2+3)+3/(1+2+3+4)+......+3/(1+2+3+...+100)
=6*(1-1/2)+6*(1/2-1/3)+6*(1/3-1/4)+......+6*(1/100-1/101)
=6[(1-1/2)+(1/2-1/3)+(1/3-1/4)+......+(1/100-1/101)]
=6(1-1/101)
=600/101
3/(1+2+3+...+n)=6/[n(n+1)]=6*[1/n-1/(n+1)]
3+3/(1+2)+3/(1+2+3)+3/(1+2+3+4)+......+3/(1+2+3+...+100)
=6*(1-1/2)+6*(1/2-1/3)+6*(1/3-1/4)+......+6*(1/100-1/101)
=6[(1-1/2)+(1/2-1/3)+(1/3-1/4)+......+(1/100-1/101)]
=6(1-1/101)
=600/101
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询