
(tanx)^[1/(cosx-sinx)]当x
1个回答
展开全部
洛必达法则
原式=lim(x趋于π/4)e^[lntanx/(cosx-sinx)]
=lim(x趋于π/4)e^[(1/cos^2xtanx)/(-sinx-cosx)]
=lim(x趋于π/4)e^1/[-sinxcosx(sinx+cosx)]
=e^(-√2)
原式=lim(x趋于π/4)e^[lntanx/(cosx-sinx)]
=lim(x趋于π/4)e^[(1/cos^2xtanx)/(-sinx-cosx)]
=lim(x趋于π/4)e^1/[-sinxcosx(sinx+cosx)]
=e^(-√2)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询