在三角形ABC中,角A.B.C所对的边分别为a,b,c,已知向量m=(b,a-2c),n=(cosA,cosB)
1个回答
展开全部
.解:b*cosA+(a-2c)*cosB=0 由正弦定理得sinBcosA+sinAcosB-2sinCcosB=0 由和角公式得sin(A+B)-2sinCcosB=0 ; sin(180-C)-2sinCcosB=0 ; sinC-2sinCcosB=0 ; cosB=1/2 ;B=60°
(2)b=2根号3,p=a+b+c,由正弦定理a/sinA=c/sinC=b/sinB=4,得a=4sinA,c=4sinC.故p=4sinA+4sinC+2G3=4(sin(120-C)+sinC)+2G3=2G3cosC+6sinC+2G3=4G3(1/2*cosC+G3/2*sinC)+2G3=4G3sin(C+30)+2G3 所以当C=60时,p最大为6G3,p最小为4G3,即4G3<p<=6G3.(G为根号)
(2)b=2根号3,p=a+b+c,由正弦定理a/sinA=c/sinC=b/sinB=4,得a=4sinA,c=4sinC.故p=4sinA+4sinC+2G3=4(sin(120-C)+sinC)+2G3=2G3cosC+6sinC+2G3=4G3(1/2*cosC+G3/2*sinC)+2G3=4G3sin(C+30)+2G3 所以当C=60时,p最大为6G3,p最小为4G3,即4G3<p<=6G3.(G为根号)
追问
不好意思 可以讲解一下第二小题吗 木有做出来 上面算完了 谢谢咯 有才的朋友帮帮忙 偶是文科班的孩纸想提高一下
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询