圆内两条非直径的弦相交,试证明它们不能互相平分
展开全部
证明(反证法):设圆O的不是直径的两条弦AB与CD交于E,且互相平分.连接OA和OB.
∵OA=OB;AE=BE.
∴OE⊥AB.(等腰三角形底边的中线也是底边的高)
同理:OE⊥CD.
这与定理"过一点有且只有一条直线与已知直线垂直"相矛盾.
故假设不成立,所以"不是直径的两条弦不能互相平分".
∵OA=OB;AE=BE.
∴OE⊥AB.(等腰三角形底边的中线也是底边的高)
同理:OE⊥CD.
这与定理"过一点有且只有一条直线与已知直线垂直"相矛盾.
故假设不成立,所以"不是直径的两条弦不能互相平分".
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询