求解,快点!
1个回答
展开全部
设甲队原计划每天修 x 千米,乙队原计划每天修 y 千米。
按原计划甲乙两队合作需要 50 天;
而实际甲队共修了 50 天,其中 30 天每天修 x 千米,另外 50-30 = 20 天每天修 x+0.6 千米,
乙队共修了 50-10 = 40 天,其中 30 天每天修 y 千米,另外 40-30 = 10 天每天修 y+0.4 千米;
可列方程组:
50(x+y) = 200 ,
30x+20(x+0.6)+30y+10(y+0.4) = 200 ;
解得:x = 2.4 ,y = 1.6 ,
即:甲队原计划每天修 2.4 千米,乙队原计划每天修 1.6 千米。
按原计划甲乙两队合作需要 50 天;
而实际甲队共修了 50 天,其中 30 天每天修 x 千米,另外 50-30 = 20 天每天修 x+0.6 千米,
乙队共修了 50-10 = 40 天,其中 30 天每天修 y 千米,另外 40-30 = 10 天每天修 y+0.4 千米;
可列方程组:
50(x+y) = 200 ,
30x+20(x+0.6)+30y+10(y+0.4) = 200 ;
解得:x = 2.4 ,y = 1.6 ,
即:甲队原计划每天修 2.4 千米,乙队原计划每天修 1.6 千米。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询