一次函数有什么简单的学习方法

 我来答
过去的日子3
2015-10-24 · TA获得超过9526个赞
知道大有可为答主
回答量:1902
采纳率:20%
帮助的人:174万
展开全部
多看一些典型例题,特别是复杂的题目。 要从已知中分析、找到隐藏的条件。
一、定义与定义式:
自变量x和因变量y有如下关系:
y=kx+b
则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。即:y=kx (k为常数,k≠0)

二、一次函数的性质:
1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b (k为任意不为零的实数 b取任何实数)
2.当x=0时,b为函数在y轴上的截距。

三、一次函数的图像及性质:
1.作法与图形:通过如下3个步骤
(1)列表;
(2)描点;
(3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)
2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:
当k>0时,直线必通过一、三象限,y随x的增大而增大;
当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;
当b=0时,直线通过原点
当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

四、确定一次函数的表达式:
已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b …… ① 和 y2=kx2+b …… ②
(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。

五、一次函数在生活中的应用:
1.当时间t一定,距离s是速度v的一次函数。s=vt。
2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。

六、常用公式:
1.求函数图像的k值:(y1-y2)/(x1-x2)
2.求与x轴平行线段的中点:|x1-x2|/2
3.求与y轴平行线段的中点:|y1-y2|/2
4.求任意线段的长:√(x1-x2)^2+(y1-y2)^2 (注:根号下(x1-x2)与(y1-y2)的平方和)
李娜911119
2018-04-12 · TA获得超过4421个赞
知道小有建树答主
回答量:37
采纳率:100%
帮助的人:14.8万
展开全部

函数不需要特别学习的,记住一些常用的就可以了,其他的可以查阅MSDN,主要知道函数的结构就行了,例如:

int fun(char* str,int i);
其中,最前面的int是函数的返回值类型,比如例子中返回的是int型,也就是整数,返回值可以根据函数具体功能确定,也可以是字符串,浮点型等等,如果不需要返回值,可以为空void

fun代表的是函数的名称,也就是你调用的时候要调用的函数名

(char* str,int i ) 括号里面的都是参数,参数可以有多个,可以是任意类型,也可以没有参数,根据实际需要确定

常用公式:
1.求函数图像的k值:(y1-y2)/(x1-x2)
2.求与x轴平行线段的中点:|x1-x2|/2
3.求与y轴平行线段的中点:|y1-y2|/2
4.求任意线段的长:√(x1-x2)^2+(y1-y2)^2  (注:根号下(x1-x2)与(y1-y2)的平方和)

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
奇诺98yRdDT
2014-05-01 · 超过44用户采纳过TA的回答
知道答主
回答量:154
采纳率:0%
帮助的人:103万
展开全部
一次函数的实例一次函数(linear function),也作线性函数,在x,y坐标轴中可以用一条直线表示,当一次函数中的一个变量的值确定时,可以用一元一次方程确定另一个变量的值。函数的基本概念:在一个变化过程中,有两个变量x和y,并且对于x每一个确定的值,在y中都有唯一确定的值与其对应,那么我们就说y是x的函数,也可以说x是自变量,y是因变量。表示为y=kx+b(k≠0,k、b均为常数),当b=0时称y为x的正比例函数,正比例函数是一次函数中的特殊情况。可表示为y=kx。 参考资料: http://zhidao.baidu.com/question/198611824.html
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式