用同样长的三根铁丝分别围成长方形,正方形和圆,谁的面积最大?

 我来答
飞扬的日记2009
2014-03-01 · TA获得超过4.4万个赞
知道小有建树答主
回答量:9483
采纳率:94%
帮助的人:1304万
展开全部
  1. 如果做成长方形 设边长为a
    则另一条边为(1/2)L-a
    面积为(1/2)La-a^2 当a为(1/4)L时 ,面积最大 而当面积最大时 恰好是正方形,所以长方形的面积总比正方形小
    2.正方形 边长L/4 面积是(L/4)^2=(L^2)/16
    3.圆 周长是L 2πR=L 所以R=L/2π 面积是π(L/2π)^2=(L^2)/4π
    4π小于16 所以圆的面积比正方形大

    综上 圆的面积最大 长方形最小

  2. 看完了采纳我哦~~

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式