如图,两个同心圆,大圆的弦AB与小圆相切于点P,大圆的弦CD经过点P,且CD=13,PD=4,
则两圆组成的圆环面积是()A.16πB.36πC.52πD.81π画的有些不好大家凑合看吧O(∩_∩)O谢谢我需要解题过程非常感谢!...
则两圆组成的圆环面积是( )
A.16π
B.36π
C.52π
D.81π
画的有些不好 大家凑合看吧 O(∩_∩)O 谢谢
我需要解题过程 非常感谢! 展开
A.16π
B.36π
C.52π
D.81π
画的有些不好 大家凑合看吧 O(∩_∩)O 谢谢
我需要解题过程 非常感谢! 展开
4个回答
展开全部
解:由题意大圆的弦AB,CD交于P,CP=9,DP=4,由相交弦定理得,AP×BP=CP×DP=36。 由于大圆的弦AB切内圆于P,连接OP,OB,则OP⊥AB,由垂径定理得,AP=BP,所以OB²-OP²=PB²=AP×BP=36,即R²-r²=36,所以圆环面积s=36π。应选B.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
过O作OM⊥CD,垂足为M,
由垂径定理,得,DM=CD/2=13/2,MP=(13-8)/2=5/2
在直角三角形ODM中,由勾股定理,得OD^2=DM^2+OM^2
在直角三角形OPM中,由勾股定理,得OP^2=PM^2+OM^2
所以环形面积=π(OD^2-OP^2)
=π(DM^2+OM^2-PM^2-OM^2)
=π(DM^2-PM^2)
=π[(13/2)^2-(5/2)^2]
=36π
故选B
由垂径定理,得,DM=CD/2=13/2,MP=(13-8)/2=5/2
在直角三角形ODM中,由勾股定理,得OD^2=DM^2+OM^2
在直角三角形OPM中,由勾股定理,得OP^2=PM^2+OM^2
所以环形面积=π(OD^2-OP^2)
=π(DM^2+OM^2-PM^2-OM^2)
=π(DM^2-PM^2)
=π[(13/2)^2-(5/2)^2]
=36π
故选B
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
关注小圆.
因为 AP*PB=CP*PD, 且 AP=PB, 得出 AP=PB=6.而大圆半径OB=OA=6.
连接OP, 因AB是切线, 可证得OP垂直平分AB.
环形面积为 π(R^2-r^2) = π[ (OB)^2 - (OP)^2]=π*PB^2 = 36π (勾股定理)
B.
因为 AP*PB=CP*PD, 且 AP=PB, 得出 AP=PB=6.而大圆半径OB=OA=6.
连接OP, 因AB是切线, 可证得OP垂直平分AB.
环形面积为 π(R^2-r^2) = π[ (OB)^2 - (OP)^2]=π*PB^2 = 36π (勾股定理)
B.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |