展开全部
解:(1)点C在以AB为直径的圆上.
理由如下:连接MC,
∵AB∥CD,
∴∠DCA=∠BAC,
∵∠DAC=∠BAC,∠DCA=∠MCA,
∴∠DAC=∠MCA,
∴AD∥MC,
∴四边形AMCD是平行四边形,
∴AM=CD,
∵△ACD沿对角线AC翻折后,点D恰好与边AB的中点M重合,
∴DC=MC,
∴AM=MC,
∵点M是AB的中点,
∴AM=BM,
∴AM=MC=BM,
∴点C在以AB为直径的圆上;
(2)由(1)得四边形AMCD是平行四边形,
∴AD=MC,
∵AD=BC,
∴MC=BC,
∴△BCM是等边三角形,
∵AB=4,
∴BC=BM=12AB=2,
过点C作CE⊥MB,垂足为E,
则BE=12MB=1,
由勾股定理得,CE=BC2-BE2=22-12=3,
理由如下:连接MC,
∵AB∥CD,
∴∠DCA=∠BAC,
∵∠DAC=∠BAC,∠DCA=∠MCA,
∴∠DAC=∠MCA,
∴AD∥MC,
∴四边形AMCD是平行四边形,
∴AM=CD,
∵△ACD沿对角线AC翻折后,点D恰好与边AB的中点M重合,
∴DC=MC,
∴AM=MC,
∵点M是AB的中点,
∴AM=BM,
∴AM=MC=BM,
∴点C在以AB为直径的圆上;
(2)由(1)得四边形AMCD是平行四边形,
∴AD=MC,
∵AD=BC,
∴MC=BC,
∴△BCM是等边三角形,
∵AB=4,
∴BC=BM=12AB=2,
过点C作CE⊥MB,垂足为E,
则BE=12MB=1,
由勾股定理得,CE=BC2-BE2=22-12=3,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询