
展开全部
解:设f(n)=(1/2+T1)(1/2+T2)...(1/2+Tn)
=5/6×9/10×13/14×....(4n+1)/(4n+2)
f(n+1)=5/6×9/10×13/14×....(4n+1)/(4n+2)×(4n+5)/(4n+6)
<5/6×9/10×13/14×....(4n+1)/(4n+2)
=f(n)
∴f(n)单调递减
∴f(n)max=f(1)=5/6
∵f(n)<a²+2a-13/6恒成立
∴a²+2a-13/6>5/6
∴a²+2a-3>0
(a+3)(a-1)>0
∴-3<a<1
=5/6×9/10×13/14×....(4n+1)/(4n+2)
f(n+1)=5/6×9/10×13/14×....(4n+1)/(4n+2)×(4n+5)/(4n+6)
<5/6×9/10×13/14×....(4n+1)/(4n+2)
=f(n)
∴f(n)单调递减
∴f(n)max=f(1)=5/6
∵f(n)<a²+2a-13/6恒成立
∴a²+2a-13/6>5/6
∴a²+2a-3>0
(a+3)(a-1)>0
∴-3<a<1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询