二元函数极值存在判定条件是什么

热点那些事儿
高粉答主

2021-07-06 · 关注我不会让你失望
知道大有可为答主
回答量:8668
采纳率:100%
帮助的人:215万
展开全部

根据德尔塔进行判断。

设:二元函数 f(x,y)的稳定点为:(x0,y0),

即:∂f(x0,y0)/∂x = ∂f(x0,y0)/∂y = 0;

记::A=∂²f(x0,y0)/∂x²

B=∂²f(x0,y0)/∂x∂y

C=∂²f(x0,y0)/∂y²

∆=AC-B²

如果:∆>0

(1) A<0,f(x0,y0) 为极大值;

(2) A>0,f(x0,y0) 为极小值;

如果:∆<0 不是极值;

如果:∆=0 需进一步判断。

举一例:f(x,y)=x²+y²,其稳定点为:(0,0)。A=2,B=0,C=2 ∆=4>0

f(0,0)=0 为最小值!

对于多元函数,同样存在极值点的概念。此外,也有鞍点的概念。

计算步骤

求极大极小值步骤

(1)求导数f'(x);

(2)求方程f'(x)=0的根;

(3)检查f'(x)在方程的左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正那么f(x)在这个根处取得极小值。

特别注意

f'(x)无意义的点也要讨论。即可先求出f'(x)=0的根和f'(x)无意义的点,再按定义去判别。

求极值点步骤

(1)求出f'(x)=0,f"(x)≠0的x值;

(2)用极值的定义(半径无限小的邻域f(x)值比该点都小或都大的点为极值点),讨论f(x)的间断点

(3)上述所有点的集合即为极值点集合。

Sievers分析仪
2025-01-06 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
帐号已注销
2021-07-03 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:169万
展开全部

导函数在定义域内有穿越型零点。

设:二元函数 f(x,y)的稳定点为:(x0,y0),

A=∂²f(x0,y0)/∂x²

B=∂²f(x0,y0)/∂x∂y

C=∂²f(x0,y0)/∂y²

∆=AC-B²

如果:∆>0

(1) A<0,f(x0,y0) 为极大值;

(2) A>0,f(x0,y0) 为极小值;

如果:∆<0 不是极值;

如果:∆=0 需进一步判断。

函数

在其整个定义域内可能有许多极 大值或极小值,而且某个极大值不 一定大于某个极小值。函数的极值 通过其一阶和二阶导数来确定。对于一元可微函数f (x),它在某点x0有极值的充分必要条件是f(x)在x0的某邻域上一阶可导,在x0处二阶可导,且f'(X0)=0,f"(x0)≠0,那么:

若f"(x0)<0,则f在x0取得极大值;

若f"(x0)>0,则f在x0取得极小值。

以上内容参考:百度百科-极值

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
yxue
推荐于2017-11-25 · TA获得超过2.9万个赞
知道大有可为答主
回答量:1.2万
采纳率:94%
帮助的人:3139万
展开全部
设:二元函数 f(x,y)的稳定点为:(x0,y0),
即:∂f(x0,y0)/∂x = ∂f(x0,y0)/∂y = 0;
记::A=∂²f(x0,y0)/∂x²
B=∂²f(x0,y0)/∂x∂y
C=∂²f(x0,y0)/∂y²
∆=AC-B²
如果:∆>0
(1) A<0,f(x0,y0) 为极大值;
(2) A>0,f(x0,y0) 为极小值;
如果:∆<0 不是极值;
如果:∆=0 需进一步判断。
举一例:f(x,y)=x²+y²,其稳定点为:(0,0)。A=2,B=0,C=2 ∆=4>0
f(0,0)=0 为最小值!
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
jishisousuo
2012-07-24
知道答主
回答量:19
采纳率:0%
帮助的人:13.5万
展开全部
导函数在定义域内有穿越型零点
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
音红袖
2012-07-24 · TA获得超过2403个赞
知道小有建树答主
回答量:1329
采纳率:0%
帮助的人:876万
展开全部
可导
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式