在三角形ABC中,DE平行于BC分别交AB,AC于点D,E两点,过点E作E,F平行于AB交B,C于

在三角形ABC中,DE平行于BC分别交AB,AC于点D,E两点,过点E作E,F平行于AB交B,C于点F.问,(1)若BF=a,FC=b,DE与BC间的距离为h,请证明s的... 在三角形ABC中,DE平行于BC分别交AB,AC于点D,E两点,过点E作E,F平行于AB交B,C于点F.问,(1)若BF=a,FC=b,DE与BC间的距离为h,请证明s的平方=4✘ s1✘ s2。(2), 平行四边形DEFG的四个顶点在三角形ABC的三边上,若三角形ADG,三角形DBC,三角形GFC的面积分别为2,5,3, 试利用(1) 中的结论求三角形ABC的面积 展开
 我来答
百度网友8d5546a
2014-02-23 · TA获得超过5.6万个赞
知道大有可为答主
回答量:1.5万
采纳率:75%
帮助的人:1764万
展开全部
(1)平行四边形DBFE的面积S=(1/2)*2*3=3
△EFC的面积S1=(1/2)*6*3=9
因为EF//AB
所以,△CEF∽△CAB
则,S1/(S1+S2+S)=[6/(6+2)]^2【相似三角形面积之比等于相似比的平方】
===> S1/(S1+S2+S)=9/16
===> 9/(9+S2+3)=9/16
===> S2=4

(2)S1=(1/2)bh
S=ah
且由(1)可得:S1/(S1+S2+S)=[b/(a+b)]^2
===> S1/(S1+S2+S)=b^2/(a+b)^2
===> (1/2)bh*(a+b)^2=b^2*[(1/2)bh+S2+ah]
===> h(a+b)^2=2b[(1/2)bh+S2+ah]
===> h(a+b)^2=b^2*h+2bS2+2abh
===> ha^2+2abh+hb^2=b^2*h+2bS2+2abh
===> S2=ha^2/2b
那么:
4S1S2=4*(1/2)bh*(ha^2/2b)=(ha)^2
所以:S^2=4S1S2

(3)过点G作AB的平行线,交BC于点H
因为四边形DEFG为平行四边形
所以,DG=EF,且DG//BF
又,GH//BD
所以,四边形DBHG也是平行四边形
所以,BH=DG
则,BH=EF
即,BE+EH=EH+HF
所以,BE=HF…………………………………………(1)
又BD//HG
所以,∠DBE=∠GHF…………………………………(2)
且在平行四边形DBHG中,BD=HG……………………(3)
那么,由(1)(2)(3)得到:△DBE≌△GHF(SAS)
已知S△DBE=5,则S△GHF=5
所以,S△GHC=5+3=8
且,S平行四边形DBHG=S△BDE+S四边形DEHG=S△GHF+S四边形DEHG=S平行四边形DEFG

则,类似(1)(2)中:
S1=S△GHC=8
S2=S△ADG=2
S=S平行四边形DBHG=S平行四边形DEFG
所以:S^2=4S1S2=4*8*2=64
所以,S=8
那么,S△ABC=S+S1+S2=8+8+2=18
更多追问追答
追问
平行四边形DEBF面积不应该是2✘3=6 吗
追答

(⊙o⊙)之前有点小问题,我重新发一遍

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式