已知抛物线y^2=2px(p>0)上任一点到焦点的距离比到y轴的距离大1 1、求抛物线方程 2

、设A、B为抛物线上两点,且AB不与x轴垂直,若线段AB的垂直平分线恰过点M(4,0),求|AB|的最大值... 、设A、B为抛物线上两点,且AB不与x轴垂直,若线段AB的垂直平分线恰过点M(4,0),求|AB|的最大值 展开
 我来答
cazyfrog
2014-03-03 · TA获得超过5.7万个赞
知道小有建树答主
回答量:7157
采纳率:98%
帮助的人:315万
展开全部
答:
抛物线y^2=2px的焦点F(p/2,0),准线方程x=-p/2
抛物线上的点到焦点F的距离等于其到准线的距离。
(1)抛物线上的点到交点的距离比到y轴即直线x=0的距离大1,
说明直线x=0和准线x=-p/2之间的距离为1,所以:
0-(-p/2)=p/2=1,p=2
所以:抛物线方程为y^2=4x

(2)设点A为(a^2,2a),点B为(b^2,2b),AB不垂直于x轴,所以:a^2≠b^2.
AB的中点D为(a^2/2+b^2/2,a+b),AB的斜率为kAB=(2a-2b)/(a^2-b^2)=2/(a+b)。
因为点M(4,0)在AB的垂直平分线上,所以MD即为AB的垂直平分线,两直线的斜率乘积为-1:
kMD=(a+b-0)/(a^2/2+b^2/2-4)=2(a+b)/(a^2+b^2-8)
因为:kAB*kMD=-1
所以:[2/(a+b)]*[2(a+b)/(a^2+b^2-8)]=4/(a^2+b^2-8)=-1
所以:a^2+b^2=4

|AB|=√[(a^2-b^2)^2+(2a-2b)^2]
=√[(a^2+b^2)^2-4a^2*b^2+4(a^2+b^2)-8ab]
=√(16-4a^2*b^2+16-8ab)
=2√[-(ab+1)^2+9]
当ab+1=0即时,|AB|最大值为2√(0+9)=6

所以:|AB|的最大值为6.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式