一个三位数除以9余7,除以5余2,除以4余3,这样的三位数共有多少
180n+7所以这个数可能的取值是187、367、547、727、907,共5个数,怎么知共5个数...
180n+7所以这个数可能的取值是187、367、547、727、907,共5个数,怎么知共5个数
展开
展开全部
.A
[解一] ①这个数除以5余2,除以4余3,此时5+2=4+3=7(余数和除数的和相同),5和4的最小公倍数是20,根据“和同取和,公倍数做周期”,此数可表示为20n+7,所以这个数除以20余7。②由于这个数除以9余7,除以20余7,9和20的最小公倍数是180,则此数可表示为180n+7。③所以这个数可能的取值是187、367、547、727、907,共5个数,选择A。
[华图名师点评一]同余问题核心口诀:余同取余,和同加和,差同减差,公倍数做周期。
[解二] 4、5、9的最小公倍数是180,所以每180个相邻的整数中,恰好有一个数满足“除以9余7,除以5余2,除以4余3”。而三位数(100~999)共有900个整数,根据900÷180=5,得到5个数最终满足条件,选择A。
[华图名师点评二]上述证明中的“每180个数中恰有一个数满足条件”其实是不严谨的,180作为周期,可以得到“如果A满足条件,那么A+180也满足条件”,但前提是必须要有“A”存在。所以可能满足条件的数,一个也没有,但作为一道选择题,选项中没有0这个选项出现,所以答案就是5。
[解三] 除以9余7的数最小的是7,而7恰恰除以5余2,除以4余3,所以我们可判断:7便是满足条件当中的一个数。而4×5×9=180是这样的数的周期,所以满足条件的数可表示为180n+7,所以满足条件的数为187、367、547、727、907,共五个。
[华图名师点评三]这种解法叫做“试值法”,也是解决同余问题时常见的简便方法。
希望对你能有所帮助。
[解一] ①这个数除以5余2,除以4余3,此时5+2=4+3=7(余数和除数的和相同),5和4的最小公倍数是20,根据“和同取和,公倍数做周期”,此数可表示为20n+7,所以这个数除以20余7。②由于这个数除以9余7,除以20余7,9和20的最小公倍数是180,则此数可表示为180n+7。③所以这个数可能的取值是187、367、547、727、907,共5个数,选择A。
[华图名师点评一]同余问题核心口诀:余同取余,和同加和,差同减差,公倍数做周期。
[解二] 4、5、9的最小公倍数是180,所以每180个相邻的整数中,恰好有一个数满足“除以9余7,除以5余2,除以4余3”。而三位数(100~999)共有900个整数,根据900÷180=5,得到5个数最终满足条件,选择A。
[华图名师点评二]上述证明中的“每180个数中恰有一个数满足条件”其实是不严谨的,180作为周期,可以得到“如果A满足条件,那么A+180也满足条件”,但前提是必须要有“A”存在。所以可能满足条件的数,一个也没有,但作为一道选择题,选项中没有0这个选项出现,所以答案就是5。
[解三] 除以9余7的数最小的是7,而7恰恰除以5余2,除以4余3,所以我们可判断:7便是满足条件当中的一个数。而4×5×9=180是这样的数的周期,所以满足条件的数可表示为180n+7,所以满足条件的数为187、367、547、727、907,共五个。
[华图名师点评三]这种解法叫做“试值法”,也是解决同余问题时常见的简便方法。
希望对你能有所帮助。
展开全部
5×9=45
45÷4=11余1
则(1+7)÷4=2
则45×(3+1)=180
180+7=187
360+7=367
540+7=547
720+7=727
900+7=907
45÷4=11余1
则(1+7)÷4=2
则45×(3+1)=180
180+7=187
360+7=367
540+7=547
720+7=727
900+7=907
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:根据分析知:9、5、4的最小公倍数为180,满足条件的最小三位数为180+7=187.根据同余性质,7加上180的若干倍仍然是满足条件的数,即满足条件的三位数为:180n+7,其中n为正整数,且180n+7<1000,
显然,n可取1、2、3…5.
所以满足条件的数为5个:187,367,547,727,907;
求采纳
显然,n可取1、2、3…5.
所以满足条件的数为5个:187,367,547,727,907;
求采纳
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |