微积分定积分问题,如题题5,求解答过程。
展开全部
f(x)=1/(1+x^2)+x^3∫[0,1] f(x)dx
对上式两边从0到1积分得
∫[0,1] f(x)dx=∫[0,1] 1/(1+x^2)dx + ∫[0,1] {x^3∫[0,1] f(x)dx}dx
=arctan1-arctan0 + ∫[0,1] f(x)dx * ∫[0,1] x^3dx (因为∫[0,1] f(x)dx是个常数)
=π/4 + (1/4) * ∫[0,1] f(x)dx
(3/4) ∫[0,1] f(x)dx =π/4
∫[0,1] f(x)dx=π/3
对上式两边从0到1积分得
∫[0,1] f(x)dx=∫[0,1] 1/(1+x^2)dx + ∫[0,1] {x^3∫[0,1] f(x)dx}dx
=arctan1-arctan0 + ∫[0,1] f(x)dx * ∫[0,1] x^3dx (因为∫[0,1] f(x)dx是个常数)
=π/4 + (1/4) * ∫[0,1] f(x)dx
(3/4) ∫[0,1] f(x)dx =π/4
∫[0,1] f(x)dx=π/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询