求数学学霸看看下面这道三重积分题

傻Mao兎
2014-06-27
知道答主
回答量:12
采纳率:0%
帮助的人:14.5万
展开全部
方法一:高斯公式。
补充平面∑1:z=0(x^2+y^2≤4),取上侧。则∫∫(∑-∑1) yzdzdx+2dxdy=∫∫∫(z+0)dxdydz=4π。∫∫(∑1) yzdzdx+2dxdy=∫∫(∑) 2dxdy=2×4π=8π。所以∫∫(∑) yzdzdx+2dxdy=4π+8π=12π。

方法二:上半球面上侧的法向量n=(x,y,z),所以dzdx=y/zdxdy,所以∫∫(∑) yzdzdx+2dxdy=∫∫(∑) (y^2+2)dxdy=∫∫(D) (y^2+2) dxdy=12π,其中D是x^2+y^2≤4。

方法三:∫∫(∑) 2dxdy=2×4π=8π。∑分为两部分∑1:y=√(4-x^2-z^2),取右侧;∑2:y=-√(4-x^2-z^2),取左侧。∑1与∑2:在zox面上的投影都是D:x^2+z^2≤4,z≥0。∫∫(∑) yzdzdx=∫∫(∑1) yzdzdx+∫∫(∑2) yzdzdx=2∫∫(D) z×√(4-x^2-z^2)dzdx=4π。所以∫∫(∑) yzdzdx+2dxdy=12π。 .
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
twelve人生要有
2014-06-27 · 超过19用户采纳过TA的回答
知道答主
回答量:108
采纳率:0%
帮助的人:57.1万
展开全部
先给好评在回答。骗你我sb
追答
狗王八逼
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式