微分方程y"-2y'=x的特解的形式

 我来答
robin_2006
推荐于2016-01-21 · TA获得超过3.9万个赞
知道大有可为答主
回答量:1.3万
采纳率:79%
帮助的人:8487万
展开全部
对应的齐次线性方程是y''-2y'=0,特征方程是r^2-2r=0,得r=0或2。
x=x*e^(0*x),λ=0是特征方程的单根,所以,非齐次线性方程的特解可设为x*(ax+b)*e^(0*x)=ax^2+bx,a,b是任意实数。
更多追问追答
追问
y“-4y'+4y=e2x   因为r=2为重根,设方程特解为y=x*2 a e*2x
上面的为什么是ax+b 这个是a ,这个实数有形式限制没
追答
e^(2x)看作是1×e^(2x),由1决定特解里面的常数a这一部分。
来自:求助得到的回答
蜡笔爱小新pq
2014-09-09 · 超过50用户采纳过TA的回答
知道答主
回答量:126
采纳率:0%
帮助的人:102万
展开全部
特征方程为:x^2-3x+2=0, 得特征根为1,2
解齐次方程的解为:c1e^x+c2e^2x
由于右端也为e^x, 为特征根之一,因此可设特解为:y*=(ax^2+bx+c)e^x
是否可以解决您的问题?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式